- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Format representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
p_margin
phase margin and associated crossover frequency
Calling Sequence
[phm,fr] = p_margin(h) phm=p_margin(h)
Arguments
- h
a SISO linear system (see :syslin).
- phm
a number, the phase margin in degree if it exists or an empty matrix.
- fr
a number, the corresponding frequency ( in hz) or an empty matrix.
Description
Given a SISO linear system in continuous or discrete time,
p_margin
returns phm
, the
phase margin in degree of h
and
fr
, the achieved corresponding frequency in
hz.
The phase margin is the values of the phase at frequency
points where the nyquist plot of h
crosses the
unit circle. In other words the phase margin is the difference
between the phase of the frequency response of
h
and -180° when the gain of
h
is 1.
The algorithm uses polynomial root finder to solve the equations:
- h(s)*h(-s)=1
for the continuous time case.
- h(z)*h(1/z)=1
for the discrete time case.
Examples
//continuous case h=syslin('c',-1+%s,3+2*%s+%s^2) [p,fr]=p_margin(h) [p,fr]=p_margin(h+0.7) show_margins(h+0.7,'nyquist') //discrete case h = syslin(0.1,0.04798*%z+0.0464,%z^2-1.81*%z+0.9048);//ok [p ,f]=p_margin(h) show_margins(h,'nyquist')
See Also
Report an issue | ||
<< obsvss | CACSD (Computer Aided Control Systems Design) | parrot >> |