- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Format representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
cainv
Dual of abinv
Calling Sequence
[X,dims,J,Y,k,Z]=cainv(Sl,alfa,beta,flag)
Arguments
- Sl
syslin
list containing the matrices[A,B,C,D]
.- alfa
real number or vector (possibly complex, location of closed loop poles)
- beta
real number or vector (possibly complex, location of closed loop poles)
- flag
(optional) character string
'ge'
(default) or'st'
or'pp'
- X
orthogonal matrix of size nx (dim of state space).
- dims
integer row vector
dims=[nd1,nu1,dimS,dimSg,dimN]
(5 entries, nondecreasing order).Ifflag='st'
, (resp.'pp'
),dims
has 4 (resp. 3) components.- J
real matrix (output injection)
- Y
orthogonal matrix of size ny (dim of output space).
- k
integer (normal rank of
Sl
)- Z
non-singular linear system (
syslin
list)
Description
cainv
finds a bases (X,Y)
(of state space and output space resp.)
and output injection matrix J
such that the matrices of Sl in
bases (X,Y) are displayed as:
[A11,*,*,*,*,*] [*] [0,A22,*,*,*,*] [*] X'*(A+J*C)*X = [0,0,A33,*,*,*] X'*(B+J*D) = [*] [0,0,0,A44,*,*] [0] [0,0,0,0,A55,*] [0] [0,0,0,0,0,A66] [0] Y*C*X = [0,0,C13,*,*,*] Y*D = [*] [0,0,0,0,0,C26] [0]
The partition of X
is defined by the vector
dims=[nd1,nu1,dimS,dimSg,dimN]
and the partition of Y
is determined by k
.
Eigenvalues of A11
(nd1 x nd1)
are unstable.
Eigenvalues of A22
(nu1-nd1 x nu1-nd1)
are stable.
The pair (A33, C13)
(dimS-nu1 x dimS-nu1, k x dimS-nu1)
is observable,
and eigenvalues of A33
are set to alfa
.
Matrix A44
(dimSg-dimS x dimSg-dimS)
is unstable.
Matrix A55
(dimN-dimSg,dimN-dimSg)
is stable
The pair (A66,C26)
(nx-dimN x nx-dimN)
is observable,
and eigenvalues of A66
set to beta
.
The dimS
first columns of X
span S= smallest (C,A) invariant
subspace which contains Im(B), dimSg
first columns of X
span Sg the maximal "complementary detectability subspace" of Sl
The dimN
first columns of X
span the maximal
"complementary observability subspace" of Sl
.
(dimS=0
if B(ker(D))=0).
If flag='st'
is given, a five blocks partition of the matrices is
returned and dims
has four components. If flag='pp'
is
given a four blocks partition is returned (see abinv).
This function can be used to calculate an unknown input observer:
// DDEP: dot(x)=A x + Bu + Gd // y= Cx (observation) // z= Hx (z=variable to be estimated, d=disturbance) // Find: dot(w) = Fw + Ey + Ru such that // zhat = Mw + Ny // z-Hx goes to zero at infinity // Solution exists iff Ker H contains Sg(A,C,G) inter KerC (assuming detectability) //i.e. H is such that: // For any W which makes a column compression of [Xp(1:dimSg,:);C] // with Xp=X' and [X,dims,J,Y,k,Z]=cainv(syslin('c',A,G,C)); // [Xp(1:dimSg,:);C]*W = [0 | *] one has // H*W = [0 | *] (with at least as many aero columns as above).
See Also
- abinv — AB invariant subspace
- dt_ility — detectability test
- ui_observer — unknown input observer
Report an issue | ||
<< bstap | CACSD (Computer Aided Control Systems Design) | calfrq >> |