- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Format representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
fstabst
Youla's parametrization of continuous time linear dynmaical systems
Calling Sequence
J = fstabst(P,r)
Arguments
- P
- a continuous time linear dynamical system. 
- r
- 1x2 row vector, dimension of - P22
- J
- a continuous time linear dynamical system (with same representation as - P.
Description
Parameterization of all stabilizing feedbacks.
P is partitioned as follows:
P=[ P11 P12; P21 P22]
(in state-space or transfer form: automatic conversion in state-space is done for the computations)
r = size of  P22 subsystem, (2,2) block of P
J =[J11 J12; J21 J22]
K is a stabilizing controller for P (i.e. P22) iff 
            K=lft(J,r,Q) with Q stable.
The central part of J , J11 is the lqg regulator for P
This J is such that defining T as the 2-port lft of P
            and J : [T,rt]=lft(P,r,J,r) one has that T12 is inner
            and T21 is co-inner.
Examples
See Also
History
| Version | Description | 
| 5.4.0 | Slis now checked for
                    continuous time linear dynamical system.  This modification
                    has been introduced by this commit | 
| Report an issue | ||
| << fspecg | CACSD (Computer Aided Control Systems Design) | g_margin >> |