Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.4.0 - English

Change language to:
Français - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function

Scilab help >> CACSD (Computer Aided Control Systems Design) > projsl

projsl

linear system projection

Calling Sequence

[slp]=projsl(sl,Q,M)

Arguments

sl,slp

syslin lists

Q,M

matrices (projection factorization)

Description

slp= projected model of sl where Q*M is the full rank factorization of the projection.

If (A,B,C,D) is the representation of sl, the projected model is given by (M*A*Q,M*B,C*Q,D).

Usually, the projection Q*M is obtained as the spectral projection of an appropriate auxiliary matrix W e.g. W = product of (weighted) gramians or product of Riccati equations.

Examples

rand('seed',0);sl=ssrand(2,2,5);[A,B,C,D]=abcd(sl);poles=spec(A)
[Q,M]=pbig(A,0,'c');  //keeping unstable poles
slred=projsl(sl,Q,M);spec(slred('A'))
sl('D')=rand(2,2);  //making proper system
trzeros(sl)  //zeros of sl
wi=inv(sl);  //wi=inverse in state-space
[q,m]=psmall(wi('A'),2,'d');  //keeping small zeros (poles of wi) i.e. abs(z)<2
slred2=projsl(sl,q,m);
trzeros(slred2)  //zeros of slred2 = small zeros of sl
//  Example keeping second order modes
A=diag([-1,-2,-3]);
sl=syslin('c',A,rand(3,2),rand(2,3));[nk2,W]=hankelsv(sl)
[Q,M]=pbig(W,nk2(2)-%eps,'c');    //keeping 2 eigenvalues of W
slr=projsl(sl,Q,M);  //reduced model
hankelsv(slr)

See Also

  • pbig — eigen-projection
Report an issue
<< prbs_a CACSD (Computer Aided Control Systems Design) reglin >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Oct 01 17:34:46 CEST 2012