Scilab 5.4.0
- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Format representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
h_cl
closed loop matrix
Calling Sequence
[Acl]=h_cl(P,r,K) [Acl]=h_cl(P22,K)
Arguments
- P, P22
continuous time linear dynamical systems: augmented plant or nominal plant respectively
- r
a two elements vector, dimensions of 2,2 part of
P
(r=[rows,cols]=size(P22)
)- K
a continuous time linear dynamical system: the controller
- Acl
real square matrix
Description
Given the standard plant P
(with r=size(P22)
) and the controller
K
, this function returns the closed loop matrix Acl
.
The poles of Acl
must be stable for the internal stability
of the closed loop system.
Acl
is the A
-matrix of the linear system [I -P22;-K I]^-1
i.e.
the A
-matrix of lft(P,r,K)
See Also
- lft — linear fractional transformation
Authors
F. D.
History
Version | Description |
5.4.0 | Sl is now checked for
continuous time linear dynamical system. This modification
has been introduced by this commit |
Report an issue | ||
<< h2norm | CACSD (Computer Aided Control Systems Design) | h_inf >> |