- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Format representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
ddp
disturbance decoupling
Calling Sequence
[Closed,F,G]=ddp(Sys,zeroed,B1,D1) [Closed,F,G]=ddp(Sys,zeroed,B1,D1,flag,alfa,beta)
Arguments
- Sys
syslin
list containing the matrices(A,B2,C,D2)
.- zeroed
integer vector, indices of outputs of
Sys
which are zeroed.- B1
real matrix
- D1
real matrix.
B1
andD1
have the same number of columns.- flag
string
'ge'
or'st'
(default) or'pp'
.- alpha
real or complex vector (loc. of closed loop poles)
- beta
real or complex vector (loc. of closed loop poles)
Description
Exact disturbance decoupling (output nulling algorithm).
Given a linear system, and a subset of outputs, z, which are to
be zeroed, characterize the inputs w of Sys such that the
transfer function from w to z is zero.
Sys
is a linear system {A,B2,C,D2} with one input and two outputs
( i.e. Sys: u-->(z,y) ), part the following system defined from Sys
and B1,D1
:
xdot = A x + B1 w + B2 u z = C1 x + D11 w + D12 u y = C2 x + D21 w + D22 u
outputs of Sys are partitioned into (z,y) where z is to be zeroed, i.e. the matrices C and D2 are:
C=[C1;C2] D2=[D12;D22] C1=C(zeroed,:) D12=D2(zeroed,:)
The matrix D1
is partitioned similarly as D1=[D11;D21]
with D11=D1(zeroed,:)
.
The control is u=Fx+Gw and one looks for matriced F,G
such that the
closed loop system: w-->z given by
xdot= (A+B2*F) x + (B1 + B2*G) w z = (C1+D12F) x + (D11+D12*G) w
has zero transfer transfer function.
flag='ge'
no stability constraints.
flag='st'
: look for stable closed loop system (A+B2*F stable).
flag='pp'
: eigenvalues of A+B2*F are assigned to alfa
and
beta
.
Closed is a realization of the w-->y
closed loop system
xdot= (A+B2*F) x + (B1 + B2*G) w y = (C2+D22*F) x + (D21+D22*G) w
Stability (resp. pole placement) requires stabilizability (resp. controllability) of (A,B2).
Examples
rand('seed',0);nx=6;nz=3;nu=2;ny=1; A=diag(1:6);A(2,2)=-7;A(5,5)=-9;B2=[1,2;0,3;0,4;0,5;0,0;0,0]; C1=[zeros(nz,nz),eye(nz,nz)];D12=[0,1;0,2;0,3]; Sys12=syslin('c',A,B2,C1,D12); C=[C1;rand(ny,nx)];D2=[D12;rand(ny,size(D12,2))]; Sys=syslin('c',A,B2,C,D2); [A,B2,C1,D12]=abcd(Sys12); //The matrices of Sys12. my_alpha=-1;my_beta=-2;flag='ge'; [X,dims,F,U,k,Z]=abinv(Sys12,my_alpha,my_beta,flag); clean(X'*(A+B2*F)*X) clean(X'*B2*U) clean((C1+D12*F)*X) clean(D12*U); //Calculating an ad-hoc B1,D1 G1=rand(size(B2,2),3); B1=-B2*G1; D11=-D12*G1; D1=[D11;rand(ny,size(B1,2))]; [Closed,F,G]=ddp(Sys,1:nz,B1,D1,'st',my_alpha,my_beta); closed=syslin('c',A+B2*F,B1+B2*G,C1+D12*F,D11+D12*G); ss2tf(closed)
See Also
- abinv — AB invariant subspace
- ui_observer — unknown input observer
Report an issue | ||
<< dcf | CACSD (Computer Aided Control Systems Design) | dhinf >> |