- Aide de Scilab
- CACSD (Computer Aided Control Systems Design)
- Représentations formelles et conversions
- Plot and display
- noisegen
- pol2des
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
trzeros
transmission zeros and normal rank
Calling Sequence
[tr]=trzeros(Sl) [nt,dt,rk]=trzeros(Sl)
Arguments
- Sl
- linear system ( - syslinlist)
- nt
- complex vectors 
- dt
- real vector 
- rk
- integer (normal rank of Sl) 
Description
Called with one output argument, trzeros(Sl) returns the 
            transmission zeros of the linear system Sl.
Sl may have a polynomial (but square) D matrix.
Called with 2 output arguments, trzeros returns the 
            transmission zeros of the linear system Sl as tr=nt./dt;
(Note that some components of dt may be zeros)
Called with 3 output arguments, rk  is the normal rank of Sl
Transfer matrices are converted to state-space.
If Sl is a (square) polynomial matrix trzeros returns the 
            roots of its determinant.
For usual state-space system trzeros uses the state-space 
            algorithm of Emami-Naeni and Van Dooren.
If D is invertible the transmission zeros are the eigenvalues
            of the "A matrix" of the inverse system : A - B*inv(D)*C;
If C*B is invertible the transmission zeros are the eigenvalues
            of N*A*M where M*N is a full rank factorization of 
            eye(A)-B*inv(C*B)*C;
For systems with a polynomial D matrix zeros are 
            calculated as the roots of the determinant of the system matrix.
|  | Caution: the computed zeros are not always reliable, in particular
                in case of repeated zeros. | 
Examples
W1=ssrand(2,2,5);trzeros(W1) //call trzeros roots(det(systmat(W1))) //roots of det(system matrix) s=poly(0,'s');W=[1/(s+1);1/(s-2)];W2=(s-3)*W*W';[nt,dt,rk]=trzeros(W2); St=systmat(tf2ss(W2));[Q,Z,Qd,Zd,numbeps,numbeta]=kroneck(St); St1=Q*St*Z;rowf=(Qd(1)+Qd(2)+1):(Qd(1)+Qd(2)+Qd(3)); colf=(Zd(1)+Zd(2)+1):(Zd(1)+Zd(2)+Zd(3)); roots(St1(rowf,colf)), nt./dt //By Kronecker form
See Also
| Report an issue | ||
| << time_id | CACSD (Computer Aided Control Systems Design) | ui_observer >> |