- Aide de Scilab
 - CACSD (Computer Aided Control Systems Design)
 - Représentations formelles et conversions
 - Plot and display
 - noisegen
 - pol2des
 - syslin
 - abinv
 - arhnk
 - arl2
 - arma
 - arma2p
 - arma2ss
 - armac
 - armax
 - armax1
 - arsimul
 - augment
 - balreal
 - bilin
 - bstap
 - cainv
 - calfrq
 - canon
 - ccontrg
 - cls2dls
 - colinout
 - colregul
 - cont_mat
 - contr
 - contrss
 - copfac
 - csim
 - ctr_gram
 - damp
 - dcf
 - ddp
 - dhinf
 - dhnorm
 - dscr
 - dsimul
 - dt_ility
 - dtsi
 - equil
 - equil1
 - feedback
 - findABCD
 - findAC
 - findBD
 - findBDK
 - findR
 - findx0BD
 - flts
 - fourplan
 - freq
 - freson
 - fspec
 - fspecg
 - fstabst
 - g_margin
 - gamitg
 - gcare
 - gfare
 - gfrancis
 - gtild
 - h2norm
 - h_cl
 - h_inf
 - h_inf_st
 - h_norm
 - hankelsv
 - hinf
 - imrep2ss
 - inistate
 - invsyslin
 - kpure
 - krac2
 - lcf
 - leqr
 - lft
 - lin
 - linf
 - linfn
 - linmeq
 - lqe
 - lqg
 - lqg2stan
 - lqg_ltr
 - lqr
 - ltitr
 - macglov
 - minreal
 - minss
 - mucomp
 - narsimul
 - nehari
 - nyquistfrequencybounds
 - obs_gram
 - obscont
 - observer
 - obsv_mat
 - obsvss
 - p_margin
 - parrot
 - pfss
 - phasemag
 - plzr
 - ppol
 - prbs_a
 - projsl
 - repfreq
 - ric_desc
 - ricc
 - riccati
 - routh_t
 - rowinout
 - rowregul
 - rtitr
 - sensi
 - sident
 - sorder
 - specfact
 - ssprint
 - st_ility
 - stabil
 - sysfact
 - syssize
 - time_id
 - trzeros
 - ui_observer
 - unobs
 - zeropen
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
rowinout
inner-outer factorization
Calling Sequence
[Inn,X,Gbar]=rowinout(G)
Arguments
- G
 linear system (
syslinlist)[A,B,C,D]- Inn
 inner factor (
syslinlist)- Gbar
 outer factor (
syslinlist)- X
 row-compressor of
G(syslinlist)
Description
Inner-outer factorization (and row compression) of (lxp) G =[A,B,C,D] with l>=p.
G is assumed to be tall (l>=p) without zero on the imaginary axis
            and with a D matrix which is full column rank.
G must also be stable for having Gbar stable.
G admits the following inner-outer factorization:
G = [ Inn ] | Gbar | | 0 |
where Inn is square and inner (all pass and stable) and Gbar 
            square and outer i.e:
            Gbar is square bi-proper and bi-stable (Gbar inverse is also proper 
            and stable);
Note that:
[ Gbar ] X*G = [ - ] [ 0 ]
is a row compression of G where X = Inn inverse is all-pass i.e:
T X (-s) X(s) = Identity
(for the continuous time case).
| Report an issue | ||
| << routh_t | CACSD (Computer Aided Control Systems Design) | rowregul >> |