- Scilab help
- Signal Processing
- How to
- Signal
- analpf
- bilt
- buttmag
- casc
- cepstrum
- cheb1mag
- cheb2mag
- chepol
- convol
- corr
- cspect
- czt
- detrend
- dft
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- fft
- fft2
- fftshift
- filt_sinc
- filter
- find_freq
- findm
- frfit
- frmag
- fsfirlin
- group
- hank
- hilb
- hilbert
- iir
- iirgroup
- iirlp
- intdec
- jmat
- kalm
- lattn
- lattp
- lev
- levin
- lindquist
- mese
- mfft
- mrfit
- %asn
- %k
- %sn
- phc
- pspect
- remez
- remezb
- rpem
- sincd
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
rpem
再帰推定誤差最小値推定
呼び出し手順
[w1,[v]]=rpem(w0,u0,y0,[lambda,[k,[c]]])
引数
- w0
list(theta,p,l,phi,psi)
ただし:- theta
[a,b,c] はi
3*n
次の実数ベクトルです- a,b,c
a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)]
- p
(3*n x 3*n) 実数行列.
- phi,psi,l
3*n
次の実数ベクトル
最初のコールで適用可能な値を以下に示します:
- u0
入力の実数ベクトル (任意の大きさ). (
u0($)
は rpemで使用されません)- y0
出力のベクトル (
u0
と同じ次元). (y0(1)
はrpemでは使用されません).時間領域が
(t0,t0+k-1)
の場合,u0
ベクトルは入力u(t0),u(t0+1),..,u(t0+k-1)
およびy0
は出力y(t0),y(t0+1),..,y(t0+k-1)
を有します.
オプションの引数
- lambda
オプションの引数 (忘却定数) 収束した時に1に近くなるように選択:
lambda=[lambda0,alfa,beta]
は下式に基づき更新されます :lambda(t)=alfa*lambda(t-1)+beta
ただし,
lambda(0)=lambda0
です.- k
収束した際に1に近くなるように選択される縮小係数.
k=[k0,mu,nu]
は下式に基づき更新されます:k(t)=mu*k(t-1)+nu
ただし,
k(0)=k0
です.- c
大きな引数(
c=1000
がデフォルト値です).
出力:
- w1
w0
の更新.- v
u0, y0
における二乗予測誤差の合計(オプション).特に
w1(1)
はtheta
の新しい推定値です. 新しい標本u1, y1
が利用できる時, 以下のように更新が行われます:[w2,[v]]=rpem(w1,u1,y1,[lambda,[k,[c]]])
. 任意の大きな級数を扱うことができます.
説明
ARMAXモデルの引数の再帰推定. Ljung-Soderstromの再帰予測誤差法を使用します. 考慮されるモデルを以下に示します:
y(t)+a(1)*y(t-1)+...+a(n)*y(t-n)= b(1)*u(t-1)+...+b(n)*u(t-n)+e(t)+c(1)*e(t-1)+...+c(n)*e(t-n)
このコマンドの効果は,未知の引数theta=[a,b,c]
の
推定値を更新することです.
ただし,a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)]
です.
<< remezb | Signal Processing | sincd >> |