- Scilab help
- Signal Processing
- How to
- Signal
- analpf
- bilt
- buttmag
- casc
- cepstrum
- cheb1mag
- cheb2mag
- chepol
- convol
- corr
- cspect
- czt
- detrend
- dft
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- fft
- fft2
- fftshift
- filt_sinc
- filter
- find_freq
- findm
- frfit
- frmag
- fsfirlin
- group
- hank
- hilb
- hilbert
- iir
- iirgroup
- iirlp
- intdec
- jmat
- kalm
- lattn
- lattp
- lev
- levin
- lindquist
- mese
- mfft
- mrfit
- %asn
- %k
- %sn
- phc
- pspect
- remez
- remezb
- rpem
- sincd
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
rpem
Recursive Prediction-Error Minimization estimation
Calling Sequence
[w1,[v]]=rpem(w0,u0,y0,[lambda,[k,[c]]])
Arguments
- w0
- list(theta,p,l,phi,psi)where:- theta
- [a,b,c] is a real vector of order - 3*n- a,b,c
- a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)]
 
- p
- (3*n x 3*n) real matrix. 
- phi,psi,l
- real vector of dimension - 3*n
 - Applicable values for the first call: 
- u0
- real vector of inputs (arbitrary size). ( - u0($)is not used by rpem)
- y0
- vector of outputs (same dimension as - u0). (- y0(1)is not used by rpem).- If the time domain is - (t0,t0+k-1)the- u0vector contains the inputs- u(t0),u(t0+1),..,u(t0+k-1)and- y0the outputs- y(t0),y(t0+1),..,y(t0+k-1)
Optional arguments
- lambda
- optional argument (forgetting constant) choosed close to 1 as convergence occur: - lambda=[lambda0,alfa,beta]evolves according to :- lambda(t)=alfa*lambda(t-1)+beta - with - lambda(0)=lambda0
- k
- contraction factor to be chosen close to 1 as convergence occurs. - k=[k0,mu,nu]evolves according to:- k(t)=mu*k(t-1)+nu - with - k(0)=k0.
- c
- Large argument.( - c=1000is the default value).
Outputs:
- w1
- Update for - w0.
- v
- sum of squared prediction errors on - u0, y0.(optional).- In particular - w1(1)is the new estimate of- theta. If a new sample- u1, y1is available the update is obtained by:- [w2,[v]]=rpem(w1,u1,y1,[lambda,[k,[c]]]). Arbitrary large series can thus be treated.
Description
Recursive estimation of arguments in an ARMAX model. Uses Ljung-Soderstrom recursive prediction error method. Model considered is the following:
y(t)+a(1)*y(t-1)+...+a(n)*y(t-n)= b(1)*u(t-1)+...+b(n)*u(t-n)+e(t)+c(1)*e(t-1)+...+c(n)*e(t-n)
The effect of this command is to update the estimation of
    unknown argument theta=[a,b,c] with
a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)].
| << remezb | Signal Processing | sincd >> |