- Aide Scilab
 - Traitement du Signal
 - How to
 - fft
 - Signal
 - analpf
 - bilt
 - buttmag
 - casc
 - cepstrum
 - cheb1mag
 - cheb2mag
 - chepol
 - convol
 - corr
 - cspect
 - czt
 - detrend
 - dft
 - ell1mag
 - eqfir
 - eqiir
 - faurre
 - ffilt
 - fft2
 - fftshift
 - filt_sinc
 - filter
 - find_freq
 - findm
 - frfit
 - frmag
 - fsfirlin
 - group
 - hank
 - hilb
 - hilbert
 - iir
 - iirgroup
 - iirlp
 - intdec
 - jmat
 - kalm
 - lattn
 - lattp
 - lev
 - levin
 - lindquist
 - mese
 - mfft
 - mrfit
 - %asn
 - %k
 - %sn
 - phc
 - pspect
 - remez
 - remezb
 - rpem
 - sincd
 - srfaur
 - srkf
 - sskf
 - syredi
 - system
 - trans
 - wfir
 - wiener
 - wigner
 - window
 - yulewalk
 - zpbutt
 - zpch1
 - zpch2
 - zpell
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
rpem
Recursive Prediction-Error Minimization estimation
Calling Sequence
[w1,[v]]=rpem(w0,u0,y0,[lambda,[k,[c]]])
Arguments
- w0
 list(theta,p,l,phi,psi)where:- theta
 [a,b,c] is a real vector of order
3*n- a,b,c
 a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)]
- p
 (3*n x 3*n) real matrix.
- phi,psi,l
 real vector of dimension
3*n
Applicable values for the first call:
- u0
 real vector of inputs (arbitrary size). (
u0($)is not used by rpem)- y0
 vector of outputs (same dimension as
u0). (y0(1)is not used by rpem).If the time domain is
(t0,t0+k-1)theu0vector contains the inputsu(t0),u(t0+1),..,u(t0+k-1)andy0the outputsy(t0),y(t0+1),..,y(t0+k-1)
Optional arguments
- lambda
 optional argument (forgetting constant) choosed close to 1 as convergence occur:
lambda=[lambda0,alfa,beta]evolves according to :lambda(t)=alfa*lambda(t-1)+beta
with
lambda(0)=lambda0- k
 contraction factor to be chosen close to 1 as convergence occurs.
k=[k0,mu,nu]evolves according to:k(t)=mu*k(t-1)+nu
with
k(0)=k0.- c
 Large argument.(
c=1000is the default value).
Outputs:
- w1
 Update for
w0.- v
 sum of squared prediction errors on
u0, y0.(optional).In particular
w1(1)is the new estimate oftheta. If a new sampleu1, y1is available the update is obtained by:[w2,[v]]=rpem(w1,u1,y1,[lambda,[k,[c]]]). Arbitrary large series can thus be treated.
Description
Recursive estimation of arguments in an ARMAX model. Uses Ljung-Soderstrom recursive prediction error method. Model considered is the following:
y(t)+a(1)*y(t-1)+...+a(n)*y(t-n)= b(1)*u(t-1)+...+b(n)*u(t-n)+e(t)+c(1)*e(t-1)+...+c(n)*e(t-n)
The effect of this command is to update the estimation of
    unknown argument theta=[a,b,c] with
a=[a(1),...,a(n)], b=[b(1),...,b(n)], c=[c(1),...,c(n)].
| << remezb | Traitement du Signal | sincd >> |