- Справка Scilab
- CACSD
- formal_representation
- Plot and display
- plzr
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
h_inf
Continuous time H-infinity (central) controller
Calling Sequence
[Sk,ro]=h_inf(P,r,romin,romax,nmax) [Sk,rk,ro]=h_inf(P,r,romin,romax,nmax)
Arguments
- P
a continuous-time linear dynamical system ("augmented" plant given in state-space form or in transfer form)
- r
size of the
P22
plant i.e. 2-vector[#outputs,#inputs]
- romin,romax
a priori bounds on
ro
withro=1/gama^2
; (romin=0
usually)- nmax
integer, maximum number of iterations in the gama-iteration.
Description
h_inf
computes H-infinity optimal controller for the
continuous-time plant P
.
The partition of P
into four sub-plants is given through
the 2-vector r
which is the size of the 22
part of P
.
P
is given in state-space
e.g. P=syslin('c',A,B,C,D)
with A,B,C,D
= constant matrices
or P=syslin('c',H)
with H
a transfer matrix.
[Sk,ro]=H_inf(P,r,romin,romax,nmax)
returns
ro
in [romin,romax]
and the central
controller Sk
in the same representation as
P
.
(All calculations are made in state-space, i.e conversion to state-space is done by the function, if necessary).
Invoked with three LHS parameters,
[Sk,rk,ro]=H_inf(P,r,romin,romax,nmax)
returns
ro
and the Parameterization of all stabilizing
controllers:
a stabilizing controller K
is obtained by
K=lft(Sk,r,PHI)
where PHI
is a linear
system with dimensions r'
and satisfy:
H_norm(PHI) < gamma
. rk (=r)
is the
size of the Sk22
block and ro = 1/gama^2
after nmax
iterations.
Algorithm is adapted from Safonov-Limebeer. Note that P
is assumed to be
a continuous-time plant.
See Also
Authors
F.Delebecque INRIA (1990)
History
Версия | Описание |
5.4.0 | Sl is now checked for
continuous time linear dynamical system. This modification
has been introduced by this commit |
Report an issue | ||
<< h_cl | CACSD | h_inf_st >> |