- Справка Scilab
- CACSD
- formal_representation
- Plot and display
- plzr
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
arsimul
armax simulation
Calling Sequence
[z]=arsimul(a,b,d,sig,u,[up,yp,ep]) [z]=arsimul(ar,u,[up,yp,ep])
Arguments
- ar
an armax process. See armac.
- a
is the matrix
[Id,a1,...,a_r]
of dimension (n,(r+1)*n)- b
is the matrix
[b0,......,b_s]
of dimension (n,(s+1)*m)- d
is the matrix
[Id,d_1,......,d_t]
of dimension (n,(t+1)*n)- u
is a matrix (m,N), which gives the entry u(:,j)=u_j
- sig
is a (n,n) matrix e_{k} is an n-dimensional Gaussian process with variance I
- up, yp
optional parameter which describe the past.
up=[ u_0,u_{-1},...,u_{s-1}]
;yp=[ y_0,y_{-1},...,y_{r-1}];
ep=[ e_0,e_{-1},...,e_{r-1}]
; if they are omitted, the past value are supposed to be zero- z
z=[y(1),....,y(N)]
Description
simulation of an n-dimensional armax process
A(z^-1) z(k)= B(z^-1)u(k) + D(z^-1)*sig*e(k)
A(z)= Id+a1*z+...+a_r*z^r; ( r=0 => A(z)=Id) B(z)= b0+b1*z+...+b_s z^s; ( s=-1 => B(z)=[]) D(z)= Id+d1*z+...+d_t z^t; ( t=0 => D(z)=Id)
z et e are in R^n
et u in R^m
Method
a state-space representation is constructed and an ode with the option
"discrete"
is used to compute z
.
Examples
Report an issue | ||
<< armax1 | CACSD | augment >> |