Scilab 5.5.2
- Справка Scilab
- CACSD
- formal_representation
- Plot and display
- plzr
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
projsl
linear system projection
Calling Sequence
[slp]=projsl(sl,Q,M)
Arguments
- sl,slp
syslin
lists- Q,M
matrices (projection factorization)
Description
slp
= projected model of sl
where Q*M
is the full rank
factorization of the projection.
If (A,B,C,D)
is the representation of sl
, the projected model
is given by (M*A*Q,M*B,C*Q,D)
.
Usually, the projection Q*M
is obtained as the spectral projection
of an appropriate auxiliary matrix W
e.g. W
= product
of (weighted) gramians or product of Riccati equations.
Examples
rand('seed',0);sl=ssrand(2,2,5);[A,B,C,D]=abcd(sl);poles=spec(A) [Q,M]=pbig(A,0,'c'); //keeping unstable poles slred=projsl(sl,Q,M);spec(slred('A')) sl('D')=rand(2,2); //making proper system trzeros(sl) //zeros of sl wi=inv(sl); //wi=inverse in state-space [q,m]=psmall(wi('A'),2,'d'); //keeping small zeros (poles of wi) i.e. abs(z)<2 slred2=projsl(sl,q,m); trzeros(slred2) //zeros of slred2 = small zeros of sl // Example keeping second order modes A=diag([-1,-2,-3]); sl=syslin('c',A,rand(3,2),rand(2,3));[nk2,W]=hankelsv(sl) [Q,M]=pbig(W,nk2(2)-%eps,'c'); //keeping 2 eigenvalues of W slr=projsl(sl,Q,M); //reduced model hankelsv(slr)
See Also
- pbig — eigen-projection
Report an issue | ||
<< prbs_a | CACSD | repfreq >> |