- Справка Scilab
- CACSD
- formal_representation
- Plot and display
- plzr
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
rowinout
inner-outer factorization
Calling Sequence
[Inn,X,Gbar]=rowinout(G)
Arguments
- G
linear system (
syslin
list)[A,B,C,D]
- Inn
inner factor (
syslin
list)- Gbar
outer factor (
syslin
list)- X
row-compressor of
G
(syslin
list)
Description
Inner-outer factorization (and row compression) of (l
xp
) G =[A,B,C,D]
with l>=p
.
G
is assumed to be tall (l>=p
) without zero on the imaginary axis
and with a D
matrix which is full column rank.
G
must also be stable for having Gbar
stable.
G
admits the following inner-outer factorization:
G = [ Inn ] | Gbar | | 0 |
where Inn
is square and inner (all pass and stable) and Gbar
square and outer i.e:
Gbar is square bi-proper and bi-stable (Gbar inverse is also proper
and stable);
Note that:
[ Gbar ] X*G = [ - ] [ 0 ]
is a row compression of G
where X
= Inn
inverse is all-pass i.e:
T X (-s) X(s) = Identity
(for the continuous time case).
Report an issue | ||
<< routh_t | CACSD | rowregul >> |