- Справка Scilab
- CACSD
- formal_representation
- Plot and display
- plzr
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
gtild
tilde operation
Calling Sequence
Gt=gtild(G) Gt=gtild(G,flag)
Arguments
- G
either a polynomial or a linear system (
syslin
list) or a rational matrix- Gt
same as G
- flag
character string: either
'c'
or'd'
(optional parameter).
Description
If G
is a polynomial matrix (or a polynomial), Gt=gtild(G,'c')
returns the polynomial matrix Gt(s)=G(-s)'
.
If G
is a polynomial matrix (or a polynomial), Gt=gtild(G,'d')
returns the polynomial matrix Gt=G(1/z)*z^n
where n is the maximum
degree of G
.
For continuous-time systems represented in state-space by a syslin
list,
Gt = gtild(G,'c')
returns a state-space representation
of G(-s)'
i.e the ABCD
matrices of Gt
are
A',-C', B', D'
. If G
is improper (D= D(s)
)
the D
matrix of Gt
is D(-s)'
.
For discrete-time systems represented in state-space by a syslin
list,
Gt = gtild(G,'d')
returns a state-space representation
of G(-1/z)'
i.e the (possibly improper) state-space
representation of -z*C*inv(z*A-B)*C + D(1/z)
.
For rational matrices, Gt = gtild(G,'c')
returns the rational
matrix Gt(s)=G(-s)
and Gt = gtild(G,'d')
returns the
rational matrix Gt(z)= G(1/z)'
.
The parameter flag
is necessary when gtild
is called with
a polynomial argument.
Examples
//Continuous time s=poly(0,'s');G=[s,s^3;2+s^3,s^2-5] Gt=gtild(G,'c') Gt-horner(G,-s)' //continuous-time interpretation Gt=gtild(G,'d'); Gt-horner(G,1/s)'*s^3 //discrete-time interpretation G=ssrand(2,2,3);Gt=gtild(G); //State-space (G is cont. time by default) clean((horner(ss2tf(G),-s))'-ss2tf(Gt)) //Check // Discrete-time z=poly(0,'z'); Gss=ssrand(2,2,3);Gss('dt')='d'; //discrete-time Gss(5)=[1,2;0,1]; //With a constant D matrix G=ss2tf(Gss);Gt1=horner(G,1/z)'; Gt=gtild(Gss); Gt2=clean(ss2tf(Gt)); clean(Gt1-Gt2) //Check //Improper systems z=poly(0,'z'); Gss=ssrand(2,2,3);Gss(7)='d'; //discrete-time Gss(5)=[z,z^2;1+z,3]; //D(z) is polynomial G=ss2tf(Gss);Gt1=horner(G,1/z)'; //Calculation in transfer form Gt=gtild(Gss); //..in state-space Gt2=clean(ss2tf(Gt));clean(Gt1-Gt2) //Check
See Also
Report an issue | ||
<< gfrancis | CACSD | h2norm >> |