- Ajuda do Scilab
 - CACSD
 - formal_representation
 - Plot and display
 - plzr
 - pol2des
 - routh_t
 - ssprint
 - syslin
 - abinv
 - arhnk
 - arl2
 - arma
 - arma2p
 - arma2ss
 - armac
 - armax
 - armax1
 - arsimul
 - augment
 - balreal
 - bilin
 - bstap
 - cainv
 - calfrq
 - canon
 - ccontrg
 - cls2dls
 - colinout
 - colregul
 - cont_mat
 - contr
 - contrss
 - copfac
 - csim
 - ctr_gram
 - damp
 - dcf
 - ddp
 - dhinf
 - dhnorm
 - dscr
 - dsimul
 - dt_ility
 - dtsi
 - equil
 - equil1
 - feedback
 - findABCD
 - findAC
 - findBD
 - findBDK
 - findR
 - findx0BD
 - flts
 - fourplan
 - freq
 - freson
 - fspec
 - fspecg
 - fstabst
 - g_margin
 - gamitg
 - gcare
 - gfare
 - gfrancis
 - gtild
 - h2norm
 - h_cl
 - h_inf
 - h_inf_st
 - h_norm
 - hankelsv
 - hinf
 - imrep2ss
 - inistate
 - invsyslin
 - kpure
 - krac2
 - lcf
 - leqr
 - lft
 - lin
 - linf
 - linfn
 - linmeq
 - lqe
 - lqg
 - lqg2stan
 - lqg_ltr
 - lqr
 - ltitr
 - macglov
 - minreal
 - minss
 - mucomp
 - narsimul
 - nehari
 - noisegen
 - nyquistfrequencybounds
 - obs_gram
 - obscont
 - observer
 - obsv_mat
 - obsvss
 - p_margin
 - parrot
 - pfss
 - phasemag
 - ppol
 - prbs_a
 - projsl
 - repfreq
 - ric_desc
 - ricc
 - riccati
 - rowinout
 - rowregul
 - rtitr
 - sensi
 - sident
 - sorder
 - specfact
 - st_ility
 - stabil
 - sysfact
 - syssize
 - time_id
 - trzeros
 - ui_observer
 - unobs
 - zeropen
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
gtild
tilde operation
Calling Sequence
Gt=gtild(G) Gt=gtild(G,flag)
Arguments
- G
 either a polynomial or a linear system (
syslinlist) or a rational matrix- Gt
 same as G
- flag
 character string: either
'c'or'd'(optional parameter).
Description
If G is a polynomial matrix (or a polynomial), Gt=gtild(G,'c')
            returns the polynomial matrix Gt(s)=G(-s)'.
If G is a polynomial matrix (or a polynomial),  Gt=gtild(G,'d') 
            returns the polynomial matrix Gt=G(1/z)*z^n where n is the maximum
            degree of G.
For continuous-time systems represented in state-space by a syslin list,
            Gt = gtild(G,'c') returns a state-space representation
            of G(-s)' i.e the ABCD matrices of Gt are
            A',-C', B', D'. If G is improper (D= D(s)) 
            the D matrix of Gt is D(-s)'.
For  discrete-time systems represented in state-space by a syslin list,
            Gt = gtild(G,'d') returns a state-space representation
            of G(-1/z)' i.e the (possibly improper) state-space 
            representation of -z*C*inv(z*A-B)*C + D(1/z).
For rational matrices, Gt = gtild(G,'c') returns the rational
            matrix Gt(s)=G(-s) and Gt = gtild(G,'d') returns the
            rational matrix Gt(z)= G(1/z)'.
The parameter flag is necessary when gtild is called with
            a polynomial argument.
Examples
//Continuous time s=poly(0,'s');G=[s,s^3;2+s^3,s^2-5] Gt=gtild(G,'c') Gt-horner(G,-s)' //continuous-time interpretation Gt=gtild(G,'d'); Gt-horner(G,1/s)'*s^3 //discrete-time interpretation G=ssrand(2,2,3);Gt=gtild(G); //State-space (G is cont. time by default) clean((horner(ss2tf(G),-s))'-ss2tf(Gt)) //Check // Discrete-time z=poly(0,'z'); Gss=ssrand(2,2,3);Gss('dt')='d'; //discrete-time Gss(5)=[1,2;0,1]; //With a constant D matrix G=ss2tf(Gss);Gt1=horner(G,1/z)'; Gt=gtild(Gss); Gt2=clean(ss2tf(Gt)); clean(Gt1-Gt2) //Check //Improper systems z=poly(0,'z'); Gss=ssrand(2,2,3);Gss(7)='d'; //discrete-time Gss(5)=[z,z^2;1+z,3]; //D(z) is polynomial G=ss2tf(Gss);Gt1=horner(G,1/z)'; //Calculation in transfer form Gt=gtild(Gss); //..in state-space Gt2=clean(ss2tf(Gt));clean(Gt1-Gt2) //Check
See Also
| Report an issue | ||
| << gfrancis | CACSD | h2norm >> |