Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.5.2 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> CACSD (Computer Aided Control Systems Design) > rtitr

rtitr

discrete time response (transfer matrix)

Calling Sequence

[y]=rtitr(Num,Den,u [,up,yp])

Arguments

Num,Den

polynomial matrices (resp. dimensions : nxm and nxn)

u

real matrix (dimension mx(t+1)

up,yp

real matrices (up dimension mx(max(degree(Den))) (default values=0) , yp dimension nx (max(degree(Den))))

y

real matrix

Description

y=rtitr(Num,Den,u [,up,yp]) returns the time response of the discrete time linear system with transfer matrix Den^-1 Num for the input u, i.e y and u are such that Den y = Num u at t=0,1,...

If d1=max(degree(Den)), and d2=max(degree(Num)) the polynomial matrices Den(z) and Num(z) may be written respectively as:

D(z) = D_0  + D_1  z + ... + D_d1   z^d1
N(z) = N_0  + N_1  z + ... + N_d2   z^d2

and Den y = Num u is interpreted as the recursion:

D(0)y(t)+D(1)y(t+1)+...+ D(d1)y(t+d1)= N(0) u(t) +....+ N(d2) u(t+d2)

It is assumed that D(d1) is non singular.

The columns of u are the inputs of the system at t=0,1,...,T:

u=[u(0) , u(1),...,u(T)]

The outputs at t=0,1,...,T+d1-d2 are the columns of the matrix y:

y = [y(0), y(1),  .... y(T+d1-d2)]

up and yp define the initial conditions for t < 0 i.e

up = [u(-d1), ..., u(-1)  ]
yp = [y(-d1), ...  y(-1)  ]

Depending on the relative values of d1 and d2, some of the leftmost components of up, yp are ignored. The default values of up and yp are zero: up = 0*ones(m,d1), yp=0*ones(n,d1)

Examples

z=poly(0,'z');
Num=1+z;
Den=1+z;
u=[1,2,3,4,5];
rtitr(Num,Den,u)-u
//Other examples
//siso
//causal
n1=1;
d1=poly([1 1],'z','coeff');       // y(j)=-y(j-1)+u(j-1)
r1=[0 1 0 1 0 1 0 1 0 1 0];
r=rtitr(n1,d1,ones(1,10));
norm(r1-r,1)
//hot restart
r=rtitr(n1,d1,ones(1,9),1,0);
norm(r1(2:11)-r)
//non causal
n2=poly([1 1 1],'z','coeff');
d2=d1;    // y(j)=-y(j-1)+u(j-1)+u(j)+u(j+1)
r2=[2 1 2 1 2 1 2 1 2];
r=rtitr(n2,d2,ones(1,10));
norm(r-r2,1)
//hot restart
r=rtitr(n2,d2,ones(1,9),1,2);
norm(r2(2:9)-r,1)
//
//MIMO example
//causal
d1=d1*diag([1 0.5]);
n1=[1 3 1;2 4 1];
r1=[5;14]*r1;
r=rtitr(n1,d1,ones(3,10));
norm(r1-r,1)
//
r=rtitr(n1,d1,ones(3,9),[1;1;1],[0;0]);
norm(r1(:,2:11)-r,1)
//polynomial n1  (same ex.)
n1(1,1)=poly(1,'z','c');
r=rtitr(n1,d1,ones(3,10));
norm(r1-r,1)
//
r=rtitr(n1,d1,ones(3,9),[1;1;1],[0;0]);
norm(r1(:,2:11)-r,1)
//non causal
d2=d1;n2=n2*n1;
r2=[5;14]*r2;
r=rtitr(n2,d2,ones(3,10));
norm(r2-r)
//
r=rtitr(n2,d2,ones(3,9),[1;1;1],[10;28]);
norm(r2(:,2:9)-r,1)
//
//  State-space or transfer
a = [0.21 , 0.63 , 0.56 , 0.23 , 0.31
     0.76 , 0.85 , 0.66 , 0.23 , 0.93
     0 , 0.69 , 0.73 , 0.22 , 0.21
     0.33 , 0.88 , 0.2 , 0.88 , 0.31
     0.67 , 0.07 , 0.54 , 0.65 , 0.36];
b = [0.29 , 0.5 , 0.92
     0.57 , 0.44 , 0.04
     0.48 , 0.27 , 0.48
     0.33 , 0.63 , 0.26
     0.59 , 0.41 , 0.41];
c = [0.28 , 0.78 , 0.11 , 0.15 , 0.84
     0.13 , 0.21 , 0.69 , 0.7 , 0.41];
d = [0.41 , 0.11 , 0.56
     0.88 , 0.2 , 0.59];
s=syslin('d',a,b,c,d);
h=ss2tf(s);num=h('num');
den=h('den');
den=den(1,1)*eye(2,2);
u=1;u(3,10)=0;
r3=flts(u,s);
r=rtitr(num,den,u);
norm(r3-r,1)

See Also

  • ltitr — discrete time response (state space)
  • exp — exponentielle
  • flts — time response (discrete time, sampled system)
Report an issue
<< rowregul CACSD (Computer Aided Control Systems Design) sensi >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Apr 01 10:21:40 CEST 2015