- Aide de Scilab
- CACSD (Computer Aided Control Systems Design)
- Représentations formelles et conversions
- Plot and display
- noisegen
- pol2des
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
fstabst
Youla's parametrization of continuous time linear dynmaical systems
Calling Sequence
J = fstabst(P,r)
Arguments
- P
a continuous time linear dynamical system.
- r
1x2 row vector, dimension of
P22
- J
a continuous time linear dynamical system (with same representation as
P
.
Description
Parameterization of all stabilizing feedbacks.
P
is partitioned as follows:
P=[ P11 P12; P21 P22]
(in state-space or transfer form: automatic conversion in state-space is done for the computations)
r
= size of P22
subsystem, (2,2) block of P
J =[J11 J12; J21 J22]
K
is a stabilizing controller for P
(i.e. P22
) iff
K=lft(J,r,Q)
with Q
stable.
The central part of J
, J11
is the lqg regulator for P
This J
is such that defining T
as the 2-port lft
of P
and J
: [T,rt]=lft(P,r,J,r)
one has that T12
is inner
and T21
is co-inner.
Examples
See Also
History
Version | Description |
5.4.0 | Sl is now checked for
continuous time linear dynamical system. This modification
has been introduced by this commit |
Report an issue | ||
<< fspecg | CACSD (Computer Aided Control Systems Design) | g_margin >> |