Scilab 5.5.2
- Aide de Scilab
- CACSD (Computer Aided Control Systems Design)
- Représentations formelles et conversions
- Plot and display
- noisegen
- pol2des
- syslin
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function
gfrancis
Francis equations for tracking
Calling Sequence
[L,M,T]=gfrancis(Plant,Model)
Arguments
- Plant
a continuous time dynamical system in state-space representation.
- Model
a continuous time dynamical system in state-space representation.
- L,M,T
real matrices
Description
Given the linear plant:
x'= F*x + G*u y = H*x + J*u
and the linear model
xm'= A*xm + B*um ym = C*xm + D*um
the goal is for the plant to track the model i.e. e = y - ym ---> 0
while keeping stable the state x(t) of the plant.
u
is given by feedforward and feedback
u = L*xm + M*um + K*(x-T*xm) = [K , L-K*T] *(x,xm) + M*um
The matrices T,L,M satisfy generalized Francis equations
F*T + G*L = T*A H*T + J*L = C G*M = T*B J*M = D
The matrix K
must be chosen as stabilizing the pair (F,G)
See example of use in directory demos/tracking
.
Examples
History
Version | Description |
5.4.0 | Sl is now checked for
continuous time linear dynamical system. This modification
has been introduced by this commit |
Report an issue | ||
<< gfare | CACSD (Computer Aided Control Systems Design) | gtild >> |