Scilab 5.3.0
- Manual Scilab
- Processamento de Sinais
- How to
- Signal
- analpf
- bilt
- buttmag
- casc
- cepstrum
- cheb1mag
- cheb2mag
- chepol
- convol
- corr
- cspect
- czt
- detrend
- dft
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- fft
- fft2
- fftshift
- filt_sinc
- filter
- find_freq
- findm
- frfit
- frmag
- fsfirlin
- group
- hank
- hilb
- hilbert
- iir
- iirgroup
- iirlp
- intdec
- jmat
- kalm
- lattn
- lattp
- lev
- levin
- lindquist
- mese
- mfft
- mrfit
- %asn
- %k
- %sn
- phc
- pspect
- remez
- remezb
- rpem
- sincd
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
srfaur
square-root algorithm
Calling Sequence
[p,s,t,l,rt,tt]=srfaur(h,f,g,r0,n,p,s,t,l)
Arguments
- h, f, g
convenient matrices of the state-space model.
- r0
E(yk*yk').
- n
number of iterations.
- p
estimate of the solution after n iterations.
- s, t, l
intermediate matrices for successive iterations;
- rt, tt
gain matrices of the filter model after
n
iterations.- p, s, t, l
may be given as input if more than one recursion is desired (evaluation of intermediate values of
p
).
Description
square-root algorithm for the algebraic Riccati equation.
Examples
//GENERATE SIGNAL x=%pi/10:%pi/10:102.4*%pi; rand('seed',0);rand('normal'); y=[1;1]*sin(x)+[sin(2*x);sin(1.9*x)]+rand(2,1024); //COMPUTE CORRELATIONS c=[];for j=1:2,for k=1:2,c=[c;corr(y(k,:),y(j,:),64)];end;end c=matrix(c,2,128); //FINDING H,F,G with 6 states hk=hank(20,20,c); [H,F,G]=phc(hk,2,6); //SOLVING RICCATI EQN r0=c(1:2,1:2); [P,s,t,l,Rt,Tt]=srfaur(H,F,G,r0,200); //Make covariance matrix exactly symmetric Rt=(Rt+Rt')/2
<< sincd | Processamento de Sinais | srkf >> |