- Manual Scilab
- Processamento de Sinais
- How to
- Signal
- analpf
- bilt
- buttmag
- casc
- cepstrum
- cheb1mag
- cheb2mag
- chepol
- convol
- corr
- cspect
- czt
- detrend
- dft
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- fft
- fft2
- fftshift
- filt_sinc
- filter
- find_freq
- findm
- frfit
- frmag
- fsfirlin
- group
- hank
- hilb
- hilbert
- iir
- iirgroup
- iirlp
- intdec
- jmat
- kalm
- lattn
- lattp
- lev
- levin
- lindquist
- mese
- mfft
- mrfit
- %asn
- %k
- %sn
- phc
- pspect
- remez
- remezb
- rpem
- sincd
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
pspect
two sided cross-spectral estimate between 2 discrete time signals using the Welch's average periodogram method.
Calling Sequence
[sm [,cwp]]=pspect(sec_step,sec_leng,wtype,x [,y] [,wpar]) [sm [,cwp]]=pspect(sec_step,sec_leng,wtype,nx [,ny] [,wpar])
Arguments
- x
vector, the time-domain samples of the first signal.
- y
vector, the time-domain samples of the second signal. If
y
is omitted it is supposed to be equal tox
(auto-correlation). If it is present, it must have the same numer of element thanx
.- nx
a scalar : the number of samples in the
x
signal. In this case the segments of thex
signal are loaded by a user defined function namedgetx
(see below).- ny
a scalar : the number of samples in the
y
signal. In this case the segments of the y signal are loaded by a user defined function namedgety
(see below). If presentny
must be equal tonx
.- sec_step
offset of each data window. The overlap
D
is given by sec_leng -sec_step. if sec_step==sec_leng/2
50% overlap is made. The overlap- sec_leng
Number of points of the window.
- wtype
The window type
're'
: rectangular'tr'
: triangular'hm'
: Hamming'hn'
: Hanning'kr'
: Kaiser,in this case the wpar argument must be given'ch'
: Chebyshev, in this case the wpar argument must be given
- wpar
optional parameters for
Kaiser and Chebyshev windows:
'kr':
wpar must be a strictly positive number
'ch':
wpar
must be a 2 element vector[main_lobe_width,side_lobe_height]with
0<main_lobe_width<.5
, andside_lobe_height>0
- sm
Two sided power spectral estimate in the interval
[0,1]
of the normalized frequencies. It is a row array withsec_len
elements . The array is real in case of auto-correlation and complex in case of cross-correlation.The associated normalized frequencies array is
linspace(0,1,sec_len)
.- cwp
unspecified Chebyshev window parameter in case of Chebyshev windowing, or an empty matrix.
Description
Computes the cross-spectrum estimate of two signals
x
and y
if both are given and the
auto-spectral estimate of x
otherwise. Spectral
estimate obtained using the modified periodogram method.
The cross spectrum of two signal x
and y
is defined to be
The modified periodogram method of spectral estimation repeatedly
calculates the periodogram of windowed sub-sections of the data containes
in x
and y
. These periodograms are
then averaged together and normalized by an appropriate constant to obtain
the final spectral estimate. It is the averaging process which reduces the
variance in the estimate.
For batch processing, the x
and
y
data may be read segment by segment using the
getx
and gety
user defined
functions. These functions have the following calling sequence:
xk=getx(ns,offset)
and
yk=gety(ns,offset)
where ns
is the
segment size and offset
is the index of the first
element of the segment in the full signal.
Reference
Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing, Upper Saddle River, NJ: Prentice-Hall, 1999
Examples
rand('normal');rand('seed',0); x=rand(1:1024-33+1); //make low-pass filter with eqfir nf=33;bedge=[0 .1;.125 .5];des=[1 0];wate=[1 1]; h=eqfir(nf,bedge,des,wate); //filter white data to obtain colored data h1=[h 0*ones(1:max(size(x))-1)]; x1=[x 0*ones(1:max(size(h))-1)]; hf=fft(h1,-1); xf=fft(x1,-1);y=real(fft(hf.*xf,1)); //plot magnitude of filter h2=[h 0*ones(1:968)];hf2=fft(h2,-1);hf2=real(hf2.*conj(hf2)); hsize=max(size(hf2));fr=(1:hsize)/hsize;plot(fr,log(hf2)); //pspect example sm=pspect(100,200,'tr',y);smsize=max(size(sm));fr=(1:smsize)/smsize; plot(fr,log(sm)); rand('unif');
Authors
C. Bunks INRIA
<< phc | Processamento de Sinais | remez >> |