- Manual Scilab
- Processamento de Sinais
- How to
- Signal
- analpf
- bilt
- buttmag
- casc
- cepstrum
- cheb1mag
- cheb2mag
- chepol
- convol
- corr
- cspect
- czt
- detrend
- dft
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- fft
- fft2
- fftshift
- filt_sinc
- filter
- find_freq
- findm
- frfit
- frmag
- fsfirlin
- group
- hank
- hilb
- hilbert
- iir
- iirgroup
- iirlp
- intdec
- jmat
- kalm
- lattn
- lattp
- lev
- levin
- lindquist
- mese
- mfft
- mrfit
- %asn
- %k
- %sn
- phc
- pspect
- remez
- remezb
- rpem
- sincd
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
window
compute symmetric window of various type
Calling Sequence
win_l=window('re',n) win_l=window('tr',n) win_l=window('hn',n) win_l=window('hm',n) win_l=window('kr',n,alpha) [win_l,cwp]=window('ch',n,par)
Arguments
- n
window length
- par
parameter 2-vector
par=[dp,df])
, wheredp
(0<dp<.5
) rules the main lobe width anddf
rules the side lobe height (df>0
).Only one of these two value should be specified the other one should set equal to
-1
.- alpha
kaiser window parameter
alpha >0
).- win
window
- cwp
unspecified Chebyshev window parameter
Description
function which calculates various symmetric window for Disgital signal processing
The Kaiser window is a nearly optimal window function. alpha
is an arbitrary positive real number that determines the shape of the
window, and the integer n
is the length of the window.
By construction, this function peaks at unity for k = n/2
,
i.e. at the center of the window, and decays exponentially towards the
window edges. The larger the value of alpha
, the narrower
the window becomes; alpha = 0
corresponds to a rectangular window.
Conversely, for larger alpha
the width of the main lobe
increases in the Fourier transform, while the side lobes decrease in
amplitude.
Thus, this parameter controls the tradeoff between main-lobe width and
side-lobe area.
alpha | window shape |
0 | Rectangular shape |
5 | Similar to the Hamming window |
6 | Similar to the Hanning window |
8.6 | Similar to the Blackman window |
The Chebyshev window minimizes the mainlobe width, given a particular sidelobe height. It is characterized by an equiripple behavior, that is, its sidelobes all have the same height.
The Hanning and Hamming windows are quite similar, they only differ in
the choice of one parameter alpha
:
w=alpha+(1 - alpha)*cos(2*%pi*x/(n-1))
alpha
is equal to 1/2 in Hanning window and to 0.54 in
Hamming window.
Examples
// Hamming window clf() N=64; w=window('hm',N); subplot(121);plot2d(1:N,w,style=color('blue')) set(gca(),'grid',[1 1]*color('gray')) subplot(122) n=256;[W,fr]=frmag(w,n); plot2d(fr,20*log10(W),style=color('blue')) set(gca(),'grid',[1 1]*color('gray')) //Kaiser window clf() N=64; w=window('kr',N,6); subplot(121);plot2d(1:N,w,style=color('blue')) set(gca(),'grid',[1 1]*color('gray')) subplot(122) n=256;[W,fr]=frmag(w,n); plot2d(fr,20*log10(W),style=color('blue')) set(gca(),'grid',[1 1]*color('gray')) //Chebyshev window clf() N=64; [w,df]=window('ch',N,[0.005,-1]); subplot(121);plot2d(1:N,w,style=color('blue')) set(gca(),'grid',[1 1]*color('gray')) subplot(122) n=256;[W,fr]=frmag(w,n); plot2d(fr,20*log10(W),style=color('blue')) set(gca(),'grid',[1 1]*color('gray'))
Authors
Carey Bunks
Bibliography
IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John Wiley and Sons, 1979. Program 5.2.
<< wigner | Processamento de Sinais | yulewalk >> |