- Manual Scilab
- Processamento de Sinais
- How to
- Signal
- analpf
- bilt
- buttmag
- casc
- cepstrum
- cheb1mag
- cheb2mag
- chepol
- convol
- corr
- cspect
- czt
- detrend
- dft
- ell1mag
- eqfir
- eqiir
- faurre
- ffilt
- fft
- fft2
- fftshift
- filt_sinc
- filter
- find_freq
- findm
- frfit
- frmag
- fsfirlin
- group
- hank
- hilb
- hilbert
- iir
- iirgroup
- iirlp
- intdec
- jmat
- kalm
- lattn
- lattp
- lev
- levin
- lindquist
- mese
- mfft
- mrfit
- %asn
- %k
- %sn
- phc
- pspect
- remez
- remezb
- rpem
- sincd
- srfaur
- srkf
- sskf
- syredi
- system
- trans
- wfir
- wiener
- wigner
- window
- yulewalk
- zpbutt
- zpch1
- zpch2
- zpell
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
hilb
FIR approximation to a Hilbert transform filter
Calling Sequence
xh=hilb(n [,wtype [,par]])
Arguments
- n
odd integer : number of points in filter
- wtype
string : window type
('re','tr','hn','hm','kr','ch')
(default='re'
)- par
window parameter for
wtype='kr' or 'ch'
defaultpar=[0 0]
see the function window for more help- xh
Hilbert transform
Description
Returns the first n points of an FIR approximation to a Hilbert transform filter centred around the origin.
The FIR filter is designed by appropraitely windowing the ideal impulse response
h(n)=(2/(n*pi))*(sin(n*pi/2))^2
for n
not equal 0 and h(0)=0
.
An approximation to an analytic signal generator can be built by designing an FIR (Finite Impulse Response) filter approximation to the Hilbert transform operator. The analytic signal can then be computed by adding the appropriately time-shifted real signal to the imaginary part generated by the Hilbert filter.
References
http://ieeexplore.ieee.org/iel4/78/7823/00330385.pdf?tp=&arnumber=330385&isnumber=7823
A. Reilly, G. Frazer, and B. Boashash, "Analytic signal generation Tips and traps", IEEE Trans. Signal Processing, vol. 42, pp.3241-3245, Nov. 1994.
Examples
plot(hilb(51))
Authors
C. B.
<< hank | Processamento de Sinais | hilbert >> |