Scilab 5.3.0
- Scilab Online Help
- Elementary Functions
- Discrete mathematics
- Floating point
- Integer representation
- Trigonometry
- abs
- amell
- and
- &
- binomial
- bitand
- bitor
- bloc2exp
- bloc2ss
- cat
- cell2mat
- cellstr
- char
- cumprod
- cumsum
- delip
- diag
- diff
- dsearch
- exp
- eye
- flipdim
- gsort
- imag
- imult
- ind2sub
- intersect
- inttrap
- isdef
- isempty
- isequal
- isequalbitwise
- isreal
- isvector
- kron
- lex_sort
- linspace
- log
- log10
- log1p
- log2
- logm
- logspace
- lstsize
- max
- meshgrid
- min
- modulo
- ndgrid
- ndims
- nextpow2
- norm
- ones
- or
- |
- pen2ea
- permute
- pertrans
- prod
- rand
- real
- resize_matrix
- setdiff
- sign
- signm
- size
- solve
- sqrt
- sqrtm
- squarewave
- ssrand
- sub2ind
- sum
- sysconv
- sysdiag
- syslin
- toeplitz
- trfmod
- trianfml
- tril
- trisolve
- triu
- typeof
- union
- unique
- vectorfind
- zeros
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
bitand
AND applied to binary representation of input arguments
Calling Sequence
[z]=bitand(x,y)
Arguments
- x
scalar/vector/matrix of positives integers
- y
scalar/vector/matrix of positives integers
- z
scalar/vector/matrix of positives integers
Description
Given x
and y
two positives
integers, this function returns z
the decimal number
whose the binary form is the AND of the binary representations of
x
and y
. (x
,
y
, z
have the same size. If
dimension of x
(and y
) is superior
than 1 then z(i)
is equal to
bitand(x(i),y(i)).
Examples
// example 1 : // '1010110' : is the binary representation of 86 // '1011011' : is the binary representation of 91 // '1010010' : is the binary representation for the AND of binary representation 86 and 91 // so the decimal number corresponding to the AND applied to binary forms 86 and 91 is : 82 x=86; y=91 z=bitand(x,y) // example 2 : x=[12,45],y=[25,49] z=bitand(x,y)
<< binomial | Elementary Functions | bitor >> |