Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.0 - 日本語

Change language to:
English - Français - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilabヘルプ >> Special Functions > airy

airy

Airy functions of the first and second kind, and their derivatives

Syntax

a = airy(z)
a = airy(fun, z)
a = airy(fun, z, scaled)

Arguments

z
array of decimal or complex numbers of any size, from scalr to hypermatrix.

fun
Selected Airy function to evaluate. It can be either a string among "Ai" "dAi" "Bi" "dBi", or an equivalent integer in [0, 3] (for compatibility with Octave and Julia)
fun Description
0"Ai"Airy function of the first kind (default)
1"dAi"Derivative Ai' of Ai
2"Bi"Airy function of the second kind
3"dBi"Derivative Bi' of Bi

scaled
Single boolean or integer 0|1. Default %F. When scaled is %T or set to 1, the raw result is scaled by the following factors before being returned:
Ai, dAi : exp(z^1.5 * 2/3) Bi, dBi : exp(-|real(z^1.5)| * 2/3)

Description

For a real x variable, the Airy functions of the first and second kind -- respectively Ai(x) and Bi(x) -- are independent real solutions y(x) of the Airy differential equation y'' = x.y. They are defined as the convergent integrals

Ai(x) = 1/π \int_0^∞ cos(t^3/3 + xt) dt
and
Bi(x) = 1/π \int_0^∞ [sin(t^3/3 + xt) + exp(-t^3/3 + xt)] dt

These definitions can be extended to the complex plane, for any z complex variable, as

Ai(z) = 1/2π \int_R exp(i(t^3/3 + zt)) dt

Let us note the properties

Ai(z´)=Ai(z)´  Bi(z´)=Bi(z)´ with z´ the complex conjugate.

In Scilab, Ai, Bi, and their first derivative are computed through Bessel and gamma functions.

Examples

With real numbers

x = -10:0.05:3;
clf
drawlater

subplot(2,1,1)  // Ai, Bi
plot(x, airy(x), "b", x, airy(2,x), "r")
gca().margins(4) = 0.08;
gca().data_bounds(3:4) = [-0.5 1.25];
gca().tight_limits = "on";
xgrid(color("grey60"),1,7)
legend(["Ai(x)" "Bi(x)"],"in_upper_left")
title("Airy functions", "fontsize", 3)

subplot(2,1,2)  // Derivatives
plot(x, airy(1, x), "b", x, airy(3,x), "r")
legend(["Ai''(x)" "Bi''(x)"],"in_upper_left")
xlabel("x", "fontsize", 3)
gca().margins(3) = 0.08;
gca().x_location = "top";
gca().x_ticks.labels = emptystr(gca().x_ticks.labels);
gca().data_bounds(3:4) = [-1 2.5];
gca().tight_limits = "on";
xgrid(color("grey60"),1,7)

drawnow

With scaling

x = -10:0.05:3;
clf
drawlater

subplot(2,1,1)  // Ai, Ai scaled
plot(x, airy("Ai",x), x, airy("Ai",x, %t), "color", ["blue" "cyan"])
gca().margins(4) = 0.08;
gca().data_bounds(3:4) = [-0.5 1];
gca().tight_limits = "on";
xgrid(color("grey60"),1,7)
legend(["Ai(x)" "Ai(x) scaled"],"in_upper_left")
title("Airy functions raw vs scaled", "fontsize", 3)

subplot(2,1,2)  // Bi, Bi scaled
plot(x, airy("Bi", x), x, airy("Bi",x, %t), "color", ["red" "darkorange"])
legend(["Bi(x)" "Bi(x) scaled"],"in_upper_left")
xlabel("x", "fontsize", 3)
gca().margins(3) = 0.08;
gca().x_location = "top";
gca().x_ticks.labels = emptystr(gca().x_ticks.labels);
gca().data_bounds(3:4) = [-0.5 1.5];
gca().tight_limits = "on";
xgrid(color("grey60"),1,7)

gcf().children.children.children.thickness = 2;
drawnow

With complex numbers

// Initializations
x = -4.5:0.2:2.5;
y = -3.5:0.2:3.5;
[X, Y] = meshgrid(x, y);
xph = -4.5:0.05:2.5;
yph = -3.5:0.05:3.5;
[Xph, Yph] = meshgrid(xph, yph);
clf
fig = gcf();
drawlater
[nc, cmin] = (100, 15);
fig.color_map = [0.6 0.6 0.6; jetcolormap(nc-1)];
meshColor = 1; // grey60 will be used for the mesh color
fig.axes_size = [800 600];
fr = 0.55;

// |Ai|
xsetech([0 0 0.5 fr])
Z = X + %i*Y;
Z = airy(Z);
V = abs(Z);
[smin, smax] = (0, 5);
surf(x, y, V)
S = gce();
set(S, "color_flag",3, "color_mode",1, ..
       "cdata_mapping","direct", "foreground",meshColor);
c = S.data.color;
c = cmin + (nc-cmin)*(c-smin)/(smax-smin);
S.data.color = c;
gca().zoom_box = [min(x) min(y) max(x) max(y) smin smax];
gca().rotation_angles = [47 -60];
xtitle("", "real(z)","imag(z)", "")
title("| Ai(z) |", "fontsize",3)
colorbar(smin, smax, [2, nc])

// arg(Ai)
xsetech([0 fr 0.5 (1-fr)])
Z = airy(Xph + %i*Yph);
V = atan(imag(Z),real(Z));
grayplot(xph, yph, V.')
xtitle("","real(z)", "imag(z)")
title("arg( Ai(z) )", "fontsize", 3)
gca().tight_limits = "on";
isoview
colorbar(,,[2 nc])
title(fig.children(1), "[rad]")

// |Bi|
xsetech([0.50 0 0.5 fr])
Z = X + %i*Y;
Z = airy(2, Z);
V = abs(Z);
[smin, smax] = (0, 5);
surf(x, y, V)
S = gce();
set(S, "color_flag",3, "color_mode",1, ..
       "cdata_mapping","direct", "foreground",meshColor);
c = S.data.color;
c = cmin + (nc-cmin)*(c-smin)/(smax-smin);
S.data.color = c;
gca().zoom_box = [min(x) min(y) max(x) max(y) smin smax];
gca().rotation_angles = [40 -130];
xtitle("", "real(z)","imag(z)", "")
title("| Bi(z) |", "fontsize",3)
colorbar(smin, smax, [2, nc])

// arg(Bi)
xsetech([0.5 fr 0.5 (1-fr)])
Z = airy(3, Xph + %i*Yph);
V = atan(imag(Z),real(Z));
grayplot(xph, yph, V.')
xtitle("","real(z)", "imag(z)")
title("arg( Bi(z) )", "fontsize", 3)
gca().tight_limits = "on";
isoview
colorbar(,,[2 nc])
title(fig.children(1), "[rad]")

drawnow

See also

History

VersionDescription
6.1.0 airy() introduced.
Report an issue
<< %sn Special Functions amell >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 25 08:53:21 CET 2020