- Справка Scilab
 - CACSD
 - formal_representation
 - Plot and display
 - plzr
 - syslin
 - abinv
 - arhnk
 - arl2
 - arma
 - arma2p
 - arma2ss
 - armac
 - armax
 - armax1
 - arsimul
 - augment
 - balreal
 - bilin
 - bstap
 - cainv
 - calfrq
 - canon
 - ccontrg
 - cls2dls
 - colinout
 - colregul
 - cont_mat
 - contr
 - contrss
 - copfac
 - csim
 - ctr_gram
 - damp
 - dcf
 - ddp
 - dhinf
 - dhnorm
 - dscr
 - dsimul
 - dt_ility
 - dtsi
 - equil
 - equil1
 - feedback
 - findABCD
 - findAC
 - findBD
 - findBDK
 - findR
 - findx0BD
 - flts
 - fourplan
 - freq
 - freson
 - fspec
 - fspecg
 - fstabst
 - g_margin
 - gamitg
 - gcare
 - gfare
 - gfrancis
 - gtild
 - h2norm
 - h_cl
 - h_inf
 - h_inf_st
 - h_norm
 - hankelsv
 - hinf
 - imrep2ss
 - inistate
 - invsyslin
 - kpure
 - krac2
 - lcf
 - leqr
 - lft
 - lin
 - linf
 - linfn
 - linmeq
 - lqe
 - lqg
 - lqg2stan
 - lqg_ltr
 - lqr
 - ltitr
 - macglov
 - minreal
 - minss
 - mucomp
 - narsimul
 - nehari
 - noisegen
 - nyquistfrequencybounds
 - obs_gram
 - obscont
 - observer
 - obsv_mat
 - obsvss
 - p_margin
 - parrot
 - pfss
 - phasemag
 - pol2des
 - ppol
 - prbs_a
 - projsl
 - repfreq
 - ric_desc
 - ricc
 - riccati
 - routh_t
 - rowinout
 - rowregul
 - rtitr
 - sensi
 - sident
 - sorder
 - specfact
 - ssprint
 - st_ility
 - stabil
 - sysfact
 - syssize
 - time_id
 - trzeros
 - ui_observer
 - unobs
 - zeropen
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
lqg2stan
LQG to standard problem
Calling Sequence
[P,r]=lqg2stan(P22,bigQ,bigR)
Arguments
- P22
 syslinlist (nominal plant) in state-space form- bigQ
 [Q,S;S',N](symmetric) weighting matrix- bigR
 [R,T;T',V](symmetric) covariance matrix- r
 1x2row vector = (number of measurements, number of inputs) (dimension of the 2,2 part ofP)- P
 syslinlist (augmented plant)
Description
lqg2stan  returns the augmented plant for linear LQG (H2) controller 
            design.
P22=syslin(dom,A,B2,C2) is the nominal plant; it can be in continuous 
            time (dom='c') or discrete time (dom='d').
. x = Ax + w1 + B2u y = C2x + w2
for continuous time plant.
x[n+1]= Ax[n] + w1 + B2u y = C2x + w2
for discrete time plant.
The (instantaneous) cost function is [x' u'] bigQ [x;u].
The covariance of [w1;w2] is E[w1;w2] [w1',w2'] = bigR
If [B1;D21] is a factor of bigQ, [C1,D12]
            is a factor of bigR and [A,B2,C2,D22] is
            a realization of P22, then P is a realization of
            [A,[B1,B2],[C1,-C2],[0,D12;D21,D22].
            The (negative) feedback computed by lqg stabilizes P22,
            i.e. the poles of cl=P22/.K are stable.
Examples
ny=2;nu=3;nx=4; P22=ssrand(ny,nu,nx); bigQ=rand(nx+nu,nx+nu);bigQ=bigQ*bigQ'; bigR=rand(nx+ny,nx+ny);bigR=bigR*bigR'; [P,r]=lqg2stan(P22,bigQ,bigR);K=lqg(P,r); //K=LQG-controller spec(h_cl(P,r,K)) //Closed loop should be stable //Same as Cl=P22/.K; spec(Cl('A')) s=poly(0,'s') lqg2stan(1/(s+2),eye(2,2),eye(2,2))
See Also
- lqg — LQG compensator
 - lqr — LQ compensator (full state)
 - lqe — linear quadratic estimator (Kalman Filter)
 - obscont — observer based controller
 - h_inf — Continuous time H-infinity (central) controller
 - augment — augmented plant
 - fstabst — Youla's parametrization of continuous time linear dynmaical systems
 - feedback — feedback operation
 
| Report an issue | ||
| << lqg | CACSD | lqg_ltr >> |