- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Formal representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syslin
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
st_ility
stabilizability test
Calling Sequence
[ns, [nc, [,U [,Slo] ]]]=st_ility(Sl [,tol])
Arguments
- Sl
syslin
list (linear system)- ns
integer (dimension of stabilizable subspace)
- nc
integer (dimension of controllable subspace
nc <= ns
)- U
basis such that its
ns
(resp.nc
) first components span the stabilizable (resp. controllable) subspace- Slo
a linear system (
syslin
list)- tol
threshold for controllability detection (see contr)
Description
Slo=( U'*A*U, U'*B, C*U, D, U'*x0 )
(syslin
list)
displays the stabilizable form of Sl
. Stabilizability means
ns=nx
(dim. of A
matrix).
[*,*,*] [*] U'*A*U = [0,*,*] U'*B = [0] [0,0,*] [0]
where (A11,B1)
(dim(A11)= nc
) is controllable and A22
(dim(A22)=ns-nc
) is stable.
"Stable" means real part of eigenvalues negative for a continuous
linear system, and magnitude of eigenvalues lower than one for a
discrete-time system (as defined by syslin
).
Examples
See Also
Report an issue | ||
<< ssprint | CACSD (Computer Aided Control Systems Design) | stabil >> |