Scilab 5.4.1
- Scilab help
- CACSD (Computer Aided Control Systems Design)
- Formal representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- pol2des
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syslin
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
lin
linearization
Calling Sequence
[A,B,C,D]=lin(sim,x0,u0) [sl]=lin(sim,x0,u0)
Arguments
- sim
function
- x0, u0
vectors of compatible dimensions
- A,B,C,D
real matrices
- sl
syslin
list
Description
linearization of the non-linear system [y,xdot]=sim(x,u)
around x0,u0
.
sim
is a function which computes y
and xdot
.
The output is a linear system (syslin
list) sl
or the
four matrices (A,B,C,D)
For example, if ftz
is the function passed to ode e.g.
[zd]=ftz(t,z,u)
and if we assume that y=x
[z]=ode(x0,t0,tf,list(ftz,u)
compute x(tf)
.
If simula
is the following function:
deff('[y,xd]=simula(x,u)','xd=ftz(tf,x,u); y=x;');
the tangent linear system sl
can be obtained by:
[A,B,C,D]=lin(simula,z,u) sl = syslin('c',A,B,C,D,x0)
Examples
deff('[y,xdot]=sim(x,u)','xdot=[u*sin(x);-u*x^2];y=xdot(1)+xdot(2)') sl=lin(sim,1,2);
See Also
Report an issue | ||
<< lft | CACSD (Computer Aided Control Systems Design) | linf >> |