- Manuel Scilab
- Algèbre Lineaire
- bdiag
- chfact
- chol
- chsolve
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- expm
- fullrf
- fullrfk
- givens
- glever
- gspec
- hess
- householder
- inv
- kernel
- linsolve
- lu
- lyap
- nlev
- orth
- pbig
- pinv
- polar
- proj
- qr
- range
- rank
- rcond
- rowcomp
- spec
- sqroot
- squeeze
- sva
- svd
- trace
- aff2ab
- balanc
- classmarkov
- eigenmarkov
- ereduc
- fstair
- genmarkov
- gschur
- im_inv
- kroneck
- lsq
- pencan
- penlaur
- projspec
- psmall
- quaskro
- randpencil
- rankqr
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- sylv
Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function
spantwo
sum and intersection of subspaces
Calling Sequence
[Xp,dima,dimb,dim]=spantwo(A,B, [tol])
Arguments
- A, B
two real or complex matrices with equal number of rows
- Xp
square non-singular matrix
- dima, dimb, dim
integers, dimension of subspaces
- tol
nonnegative real number
Description
Given two matrices A
and B
with same number of rows,
returns a square matrix Xp
(non singular but not necessarily orthogonal)
such that :
[A1, 0] (dim-dimb rows) Xp*[A,B]=[A2,B2] (dima+dimb-dim rows) [0, B3] (dim-dima rows) [0 , 0]
The first dima
columns of inv(Xp)
span range(A
).
Columns dim-dimb+1
to dima
of inv(Xp)
span the
intersection of range(A) and range(B).
The dim
first columns of inv(Xp)
span
range(A
)+range(B
).
Columns dim-dimb+1
to dim
of inv(Xp)
span
range(B
).
Matrix [A1;A2]
has full row rank (=rank(A)). Matrix [B2;B3]
has
full row rank (=rank(B)). Matrix [A2,B2]
has full row rank (=rank(A inter B)). Matrix [A1,0;A2,B2;0,B3]
has full row rank (=rank(A+B)).
Examples
A=[1,0,0,4; 5,6,7,8; 0,0,11,12; 0,0,0,16]; B=[1,2,0,0]';C=[4,0,0,1]; Sl=ss2ss(syslin('c',A,B,C),rand(A)); [no,X]=contr(Sl('A'),Sl('B'));CO=X(:,1:no); //Controllable part [uo,Y]=unobs(Sl('A'),Sl('C'));UO=Y(:,1:uo); //Unobservable part [Xp,dimc,dimu,dim]=spantwo(CO,UO); //Kalman decomposition Slcan=ss2ss(Sl,inv(Xp));
Authors
F. D.
<< spanplus | Algèbre Lineaire | sylv >> |