- Manuel Scilab
- Algèbre Lineaire
- bdiag
- chfact
- chol
- chsolve
- cmb_lin
- coff
- colcomp
- companion
- cond
- det
- expm
- fullrf
- fullrfk
- givens
- glever
- gspec
- hess
- householder
- inv
- kernel
- linsolve
- lu
- lyap
- nlev
- orth
- pbig
- pinv
- polar
- proj
- qr
- range
- rank
- rcond
- rowcomp
- spec
- sqroot
- squeeze
- sva
- svd
- trace
- aff2ab
- balanc
- classmarkov
- eigenmarkov
- ereduc
- fstair
- genmarkov
- gschur
- im_inv
- kroneck
- lsq
- pencan
- penlaur
- projspec
- psmall
- quaskro
- randpencil
- rankqr
- rowshuff
- rref
- schur
- spaninter
- spanplus
- spantwo
- sylv
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
penlaur
Laurent coefficients of matrix pencil
Calling Sequence
[Si,Pi,Di,order]=penlaur(Fs) [Si,Pi,Di,order]=penlaur(E,A)
Arguments
- Fs
a regular pencil
s*E-A
- E, A
two real square matrices
- Si,Pi,Di
three real square matrices
- order
integer
Description
penlaur
computes the first Laurent coefficients of (s*E-A)^-1
at
infinity.
(s*E-A)^-1 = ... + Si/s - Pi - s*Di + ...
at s
= infinity.
order
= order of the singularity (order=index-1).
The matrix pencil Fs=s*E-A
should be invertible.
For a index-zero pencil, Pi, Di,...
are zero and Si=inv(E)
.
For a index-one pencil (order=0),Di
=0.
For higher-index pencils, the terms -s^2 Di(2), -s^3 Di(3),...
are given by:
Di(2)=Di*A*Di
, Di(3)=Di*A*Di*A*Di
(up
to Di(order)
).
Remark
Experimental version: troubles when bad conditioning of so*E-A
Examples
Authors
F. Delebecque INRIA(1988,1990) ;
<< pencan | Algèbre Lineaire | projspec >> |