- Manuel Scilab
- CACSD
- chart
- abcd
- abinv
- arhnk
- arl2
- arma
- arma2p
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- black
- bode
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_frm
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- dbphi
- dcf
- ddp
- des2ss
- des2tf
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- evans
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- frep2tf
- freq
- freson
- fspecg
- fstabst
- g_margin
- gainplot
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hallchart
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- m_circle
- macglov
- markp2ss
- minreal
- minss
- mucomp
- narsimul
- nehari
- nicholschart
- noisegen
- nyquist
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- ppol
- prbs_a
- projsl
- reglin
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sgrid
- show_margins
- sident
- sm2des
- sm2ss
- sorder
- specfact
- ss2des
- ss2ss
- ss2tf
- st_ility
- stabil
- svplot
- sysfact
- syssize
- tf2des
- tf2ss
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
- zgrid
Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function
contr
controllability, controllable subspace, staircase
Calling Sequence
n=contr(A,B [,tol]) [n,U]=contr(A,B [,tol]) [n,U,ind,V,Ac,Bc]=contr(A,B,[,tol])
Arguments
- A, B
real matrices
- tol
tolerance parameter
- n
dimension of controllable subspace.
- U
orthogonal change of basis which puts
(A,B)
in canonical form.- V
orthogonal matrix, change of basis in the control space.
- Ac
block Hessenberg matrix
Ac=U'*A*U
- Bc
is
U'*B*V
.- ind
p integer vector associated with controllability indices (dimensions of subspaces
B, B+A*B,...=ind(1),ind(1)+ind(2),...
)
Description
[n,[U]]=contr(A,B,[tol])
gives the controllable form of an (A,B)
pair.(dx/dt = A x + B u
or x(n+1) = A x(n) +b u(n)
).
The n
first columns of U
make a basis for the controllable
subspace.
If V=U(:,1:n)
, then V'*A*V
and V'*B
give the controllable part
of the (A,B)
pair.
The pair (Bc, Ac)
is in staircase controllable form.
|B |sI-A * . . . * * | | 1| 11 . . . | | | A sI-A . . . | | | 21 22 . . . | | | . . * * | [U'BV|sI - U'AU] = |0 | 0 . . | | | A sI-A * | | | p,p-1 pp | | | | |0 | 0 0 sI-A | | | p+1,p+1|
Reference
Slicot library (see ab01od in SCI/modules/cacsd/src/slicot).
Examples
<< cont_mat | CACSD | contrss >> |