- Scilab Online Help
- Scilab
- Scilab keywords
- TMPDIR
- abort
- add_demo
- argn
- banner
- boolean
- break
- clear
- clearfun
- clearglobal
- comp
- continue
- debug
- delbpt
- dispbpt
- edit
- errcatch
- errclear
- error
- error_table
- exists
- exit
- external
- extraction
- format
- funcprot
- funptr
- getdebuginfo
- getmd5
- getmemory
- getmodules
- getos
- getscilabmode
- getshell
- getvariablesonstack
- getversion
- gstacksize
- ieee
- insertion
- intppty
- inv_coeff
- iserror
- isglobal
- lasterror
- macr2lst
- macr2tree
- matrices
- matrix
- mode
- mtlb_mode
- names
- newfun
- null
- pause
- perl
- poly
- predef
- quit
- rational
- readgateway
- resume
- sciargs
- scilab
- setbpt
- stacksize
- startup
- symbols
- testmatrix
- type
- typename
- user
- varn
- ver
- warning
- what
- where
- whereami
- who
- who_user
- whos
- with_atlas
- with_javasci
- with_macros_source
- with_module
- with_pvm
- with_texmacs
- with_tk
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
poly
polynomial definition
Calling Sequence
p=poly(a,vname, ["flag"])
Arguments
- a
matrix or real number
- vname
String, the symbolic variable name. If the string have more than 4 characters only the first 4 are taken into account.
- "flag"
string ("roots", "coeff"), default value is "roots".
Description
- If a is a matrix,
p
is the characteristic polynomial i.e.determinant(x*eye()-a)
,x
being the symbolic variable.- If v is a vector,
poly(v,"x",["roots"])
is the polynomial withroots
the entries ofv
and"x"
as formal variable. (In this case,roots
andpoly
are inverse functions). Note that Infinite roots gives zero highest degree coefficients.poly(v,"x","coeff")
creates the polynomial with symbol"x"
and with coefficients the entries ofv
(v(1) is the constant term of the polynomial). (Herepoly
andcoeff
are inverse functions).
s=poly(0,"s")
is the seed for defining
polynomials with symbol "s"
.
Examples
s=poly(0,"s");p=1+s+2*s^2; A=rand(2,2);poly(A,"x") //rational fractions h=(1+2*%s)/poly(1:4,'s','c')
<< perl | Scilab | predef >> |