- Scilab Help
- CACSD (Computer Aided Control Systems Design)
- Formal representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syslin
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
time_id
SISO least square identification
Calling Sequence
[H [,err]]=time_id(n,u,y)
Arguments
- n
order of transfer
- u
one of the following
- u1
a vector of inputs to the system
- "impuls"
if y is an impulse response
- "step"
if y is a step response.
- y
vector of response.
- H
rational function with degree n denominator and degree n-1 numerator if y(1)==0 or rational function with degree n denominator and numerator if y(1)<>0.
- err
||y - impuls(H,npt)||^2
, whereimpuls(H,npt)
are thenpt
first coefficients of impulse response ofH
Description
Identification of discrete time response. If y
is strictly
proper (y(1)=0
) then time_id
computes the least square
solution of the linear equation: Den*y-Num*u=0
with the
constraint coeff(Den,n):=1
. if y(1)~=0
then the algorithm
first computes the proper part solution and then add y(1) to the solution
Examples
z=poly(0,'z'); h=(1-2*z)/(z^2-0.5*z+5) rep=[0;ldiv(h('num'),h('den'),20)]; //impulse response H=time_id(2,'impuls',rep) // Same example with flts and u u=zeros(1,20);u(1)=1; rep=flts(u,tf2ss(h)); //impulse response H=time_id(2,u,rep) // step response u=ones(1,20); rep=flts(u,tf2ss(h)); //step response. H=time_id(2,'step',rep) H=time_id(3,u,rep) //with u as input and too high order required
See Also
Report an issue | ||
<< syssize | CACSD (Computer Aided Control Systems Design) | trzeros >> |