- Scilab Help
- CACSD (Computer Aided Control Systems Design)
- Formal representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syslin
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
syslin
linear system definition
Calling Sequence
[sl]=syslin(dom,A,B,C [,D [,x0] ]) [sl]=syslin(dom,N,D) [sl]=syslin(dom,H)
Arguments
- dom
character string (
'c'
,'d'
), or[]
or a scalar.- A,B,C,D
matrices of the state-space representation (
D
optional with default value zero matrix). For improper systemsD
is a polynomial matrix.- x0
vector (initial state; default value is
0
)- N, D
polynomial matrices
- H
rational matrix or linear state space representation
- sl
tlist ("
syslin
" list) representing the linear system
Description
syslin
defines a linear system as a list and
checks consistency of data.
dom
specifies the time domain of the system and
can have the following values:
dom='c'
for a continuous time system,
dom='d'
for a discrete time system,
n
for a sampled system with sampling period
n
(in seconds).
dom=[]
if the time domain is undefined
State-space representation:
sl=syslin(dom,A,B,C [,D [,x0] ])
represents the system :
The output of syslin
is a list of the following
form:
sl=tlist(['lss','A','B','C','D','X0','dt'],A,B,C,D,x0,dom)
Note that D
is allowed to be a polynomial matrix
(improper systems).
Transfer matrix representation:
sl=syslin(dom,N,D) sl=syslin(dom,H)
The output of syslin
is a list of the following
form : sl = rlist(N,D,dom)
or
sl=rlist(H(2),H(3),dom)
.
Linear systems defined as syslin
can be
manipulated as usual matrices (concatenation, extraction, transpose,
multiplication, etc) both in state-space or transfer
representation.
Most of state-space control functions receive a
syslin
list as input instead of the four matrices
defining the system.
Examples
A=[0,1;0,0];B=[1;1];C=[1,1]; S1=syslin('c',A,B,C) //Linear system definition S1("A") //Display of A-matrix S1("X0"), S1("dt") // Display of X0 and time domain s=poly(0,'s'); D=s; S2=syslin('c',A,B,C,D) H1=(1+2*s)/s^2, S1bis=syslin('c',H1) H2=(1+2*s+s^3)/s^2, S2bis=syslin('c',H2) S1+S2 [S1,S2] ss2tf(S1)-S1bis S1bis+S2bis S1*S2bis size(S1)
See Also
- tlist — Scilab object and typed list definition.
- lsslist — Scilab linear state space function definition
- rlist — Scilab rational fraction function definition
- ssrand — random system generator
- ss2tf — conversion from state-space to transfer function
- tf2ss — transfer to state-space
- dscr — discretization of linear system
- abcd — state-space matrices
Report an issue | ||
<< sysfact | CACSD (Computer Aided Control Systems Design) | syssize >> |