- Scilab Help
- CACSD (Computer Aided Control Systems Design)
- Formal representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syslin
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function
ricc
Riccati equation
Calling Sequence
[X,RCOND,FERR]=ricc(A,B,C,"cont""method") [X,RCOND,FERR]=ricc(F,G,H,"disc","method")
Arguments
- A,B,C
real matrices of appropriate dimensions
- F,G,H
real matrices of appropriate dimensions
- X
real matrix
- "cont","disc"'
imposed string (flag for continuous or discrete)
- method
'schr' or 'sign' for continuous-time systems and 'schr' or 'invf' for discrete-tyme systems
Description
Riccati solver.
Continuous time:
X=ricc(A,B,C,'cont')
gives a solution to the continuous time ARE
A'*X+X*A-X*B*X+C=0 .
B
and C
are assumed to be nonnegative definite.
(A,G)
is assumed to be stabilizable with G*G'
a full rank
factorization of B
.
(A,H)
is assumed to be detectable with H*H'
a full rank
factorization of C
.
Discrete time:
X=ricc(F,G,H,'disc')
gives a solution to the discrete time ARE
X=F'*X*F-F'*X*G1*((G2+G1'*X*G1)^-1)*G1'*X*F+H
F
is assumed invertible and G = G1*inv(G2)*G1'
.
One assumes (F,G1)
stabilizable and (C,F)
detectable
with C'*C
full rank factorization of H
. Use preferably
ric_desc
.
C, D are symmetric .It is assumed that the matrices A, C and D are such that the corresponding matrix pencil has N eigenvalues with moduli less than one.
Error bound on the solution and a condition estimate are also provided. It is assumed that the matrices A, C and D are such that the corresponding Hamiltonian matrix has N eigenvalues with negative real parts.
Examples
//Standard formulas to compute Riccati solutions A=rand(3,3); B=rand(3,2); C=rand(3,3); C=C*C'; R=rand(2,2); R=R*R'+eye(); B=B*inv(R)*B'; X=ricc(A,B,C,'cont'); norm(A'*X+X*A-X*B*X+C,1) H=[A -B;-C -A']; [T,d]=schur(eye(H),H,'cont'); T=T(:,1:d); X1=T(4:6,:)/T(1:3,:); norm(X1-X,1) [T,d]=schur(H,'cont'); T=T(:,1:d); X2=T(4:6,:)/T(1:3,:); norm(X2-X,1) // Discrete time case F=A; B=rand(3,2); G1=B; G2=R; G=G1/G2*G1'; H=C; X=ricc(F,G,H,'disc'); norm(F'*X*F-(F'*X*G1/(G2+G1'*X*G1))*(G1'*X*F)+H-X) H1=[eye(3,3) G;zeros(3,3) F']; H2=[F zeros(3,3);-H eye(3,3)]; [T,d]=schur(H2,H1,'disc'); T=T(:,1:d); X1=T(4:6,:)/T(1:3,:); norm(X1-X,1) Fi=inv(F); Hami=[Fi Fi*G;H*Fi F'+H*Fi*G]; [T,d]=schur(Hami,'d'); T=T(:,1:d); Fit=inv(F'); Ham=[F+G*Fit*H -G*Fit;-Fit*H Fit]; [T,d]=schur(Ham,'d'); T=T(:,1:d); X2=T(4:6,:)/T(1:3,:); norm(X2-X,1)
See Also
Used Functions
See SCI/modules/cacsd/src/slicot/riccpack.f
Report an issue | ||
<< ric_desc | CACSD (Computer Aided Control Systems Design) | riccati >> |