Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.1 - Русский

Change language to:
English - Français - 日本語 - Português -

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Справка Scilab >> Дифференциальное счисление, интегрирование > intg

intg

определённый интеграл

Синтаксис

[v, err] = intg(a, b, f)
[v, err] = intg(a, b, f, atol)
[v, err] = intg(a, b, f, atol, rtol)
[v, err, ierr] = intg(..)

Аргументы

a, b
Конечные действительные числа: границы интеграла.

f
внешняя функция (функция, список или строка)

atol
абсолютная ошибка, требуемая для результата. Значение по умолчанию: 1.d-13.

rtol
относительная ошибка, требуемая для результата. Значение по умолчанию: 1.d-8.

err
оцененная абсолютная ошибка результата.

ierr
error flag number (= 0 if no error occurred).

Описание

intg(a,b,f) вычисляет определённый интеграл функции f(t) по dt в пределах от a до b. Функция f(t) должна быть непрерывной.

Вычисление, как можно ожидать, удовлетворяет следующему условию точности: abs(I-v)<= max(atol, rtol*abs(I)), где I -- точное значение интеграла.

f -- внешняя функция:

  • Если f -- функция, то её определение должно иметь вид y = f(t).

  • Если f -- список, то этот список должен быть в виде: list(f,x1,x2,...), где f -- функция с последовательностью вызова f(t,x1,x2,...).

  • Если f -- строка, то она ссылается на имя либо процедуры Fortran либо функции C с заданной последовательностью вызова:

    • в случае Fortran вызывающая последовательность должна быть в виде double precision function f(x), где x также является числом двойной точности.

    • В случае C вызывающая последовательность должна быть double f(double *x).

Используемые функции : Связанные подпрограммы можно найти в директории SCI/modules/differential_equations/src/fortran: dqags.f и dqagse.f из quadpack.

Known Limitation

Like all the integrators, intg is subject to spike missing.

A flat function with a spike will be seen as a fully flat function if the spike is stiff enough.

This cannot be bypassed. It is easy to understand why when we know how the integrator operates. Indeed, intg uses the 21-point Gauss-Kronrod rule. Hence, any spike in-between two consecutive integration points will be undetected, and the function will be considered smooth.

However, a warning message will be issued if the function is considered very smooth. The user will then be suggested to reduce the integration interval, should he think that spikes were missed.

The following graphs illustrate that phenomenon:

On the left image, the spike lays between the 9th and 10th integration points, and is not detected. intg considers the function flat. On the right, the spike is large enough to be covered by the integration points.

When we want to display the computed solution even if the solver has encountered an error, we should add the third output argument ierr. Then errors become simple warnings. This is mostly used in the case of rounding errors.

Примеры

// Функция, написанная на языке Scilab
function y=f(x), y = x*sin(30*x)/sqrt(1-((x/(2*%pi))^2)), endfunction
exact = -2.5432596188;
I = intg(0, 2*%pi, f)
abs(exact - I)

// Функция с аргументом, написанном на языке Scilab
function y=f1(x, w), y=x*sin(w*x)/sqrt(1-((x/(2*%pi))^2)), endfunction
I = intg(0, 2*%pi, list(f1,30))
abs(exact - I)

// Функция, написанная на Fortran (требуется компилятор Fortran)
// определение функции Fortran
cd TMPDIR;
F=['      double precision function ffun(x)'
   '      double precision x,pi'
   '      pi=3.14159265358979312d+0'
   '      ffun=x*sin(30.0d+0*x)/sqrt(1.0d+0-(x/(2.0d+0*pi))**2)'
   '      return'
   '      end'];
mputl(F, 'ffun.f')

// компилируем функцию
 l = ilib_for_link('ffun', 'ffun.f', [], 'f');

// добавляем  функцию в рабочее окружение
link(l, 'ffun', 'f')

// интегрируем функцию
I = intg(0, 2*%pi, 'ffun')
abs(exact - I)

// Функция, написанная на C (требуется компилятор C)
// определение C-функции
C=['#include <math.h>'
   'double cfun(double *x)'
   '{'
   '  double y,pi=3.14159265358979312;'
   '  y=*x/(2.0e0*pi);'
   '  return *x*sin(30.0e0**x)/sqrt(1.0e0-y*y);'
   '}'];
mputl(C, 'cfun.c')

//  компилируем функцию
l = ilib_for_link('cfun', 'cfun.c', [], 'c');

// добавляем  функцию в рабочее окружение
link(l, 'cfun', 'c')

// интегрируем функцию
I = intg(0, 2*%pi, 'cfun')
abs(exact - I)

Смотрите также

  • intc — интеграл вдоль прямой на комплексной плоскости
  • intl — интеграл Коши
  • inttrap — интегрирование экспериментальных данных методом трапеций
  • intsplin — интегрирование экспериментальных данных кусочной интерполяцией
  • ode — программа решения обыкновенных дифференциальных уравнений

История

ВерсияОписание
6.0.2 The default value atol of the absolute tolerance is increased from 1O-14 to 1O-13.
Report an issue
<< integrate Дифференциальное счисление, интегрирование intl >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jan 03 14:39:52 CET 2022