Scilab 6.1.0
      
      - Scilab Help
 - Signal Processing
 - Filters
 - How to design an elliptic filter
 - analpf
 - buttmag
 - casc
 - cheb1mag
 - cheb2mag
 - ell1mag
 - eqfir
 - eqiir
 - faurre
 - ffilt
 - filt_sinc
 - filter
 - find_freq
 - frmag
 - fsfirlin
 - group
 - hilbert
 - iir
 - iirgroup
 - iirlp
 - kalm
 - lev
 - levin
 - lindquist
 - remez
 - remezb
 - srfaur
 - srkf
 - sskf
 - syredi
 - system
 - trans
 - wfir
 - wfir_gui
 - wiener
 - wigner
 - window
 - yulewalk
 - zpbutt
 - zpch1
 - zpch2
 - zpell
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
system
observation update
Syntax
[x1,y]=system(x0,f,g,h,q,r)
Arguments
- x0
 input state vector
- f
 system matrix
- g
 input matrix
- h
 Output matrix
- q
 input noise covariance matrix
- r
 output noise covariance matrix
- x1
 output state vector
- y
 output observation
Description
define system function which generates the next observation given the old state. System recursively calculated
x1=f*x0+g*u y=h*x0+v
where u is distributed N(0,q)
            and v is distribute N(0,r).
Examples
// initialize state statistics // (mean and err. variance) m0=[10 10]'; p0=[2 0;0 2]; // create system f=[1.1 0.1;0 0.8]; g=[1 0;0 1]; h=[1 0;0 1]; // noise statistics q=[.03 0.01;.01 0.03]; r=2*eye(2); // initialize system process rand("seed",2); rand("normal"); p0c=chol(p0); x0=m0+p0c'*rand(ones(m0)); yt=[]; //initialize kalman filter xke0=m0;pk0=p0; // initialize err. variance ecv=[pk0(1,1) pk0(2,2)]'; [x1,y]=system(x0,f,g,h,q,r)
| Report an issue | ||
| << syredi | Filters | trans >> |