Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: Français - Português - 日本語 - Русский
Scilab Help >> Control Systems - CACSD > Linear System Representation > sysdiag

sysdiag

Creates a block diagonal matrix from provided inputs. Block diagonal system connection. (obsolete)

Syntax

r = sysdiag(a1,a2,...,an)

Arguments

ai

subsystems (i.e. gains, or linear systems in state-space or transfer form).

constant, boolean, polynomial or rational matrices of any size.

r

a matrix with a1, a2, a3, ... on the diagonal.

Description

sysdiag() is obsolete. Please use blockdiag() instead.

Returns the block-diagonal system made with subsystems put in the main diagonal.

Given the inputs A, B and C, the output will have these matrices arranged on the diagonal: [A 0 0 ; 0 B 0 ; 0 0 C] .

If all the input matrices are square, the output is known as a block diagonal matrix.
Used in particular for system interconnections.

For boolean matrices sysdiag() always returns a zero one matrix in the corresponding block ("true" values are replaced by 1 and "false" value by 0).

Examples

s = poly(0,'s')
sysdiag(rand(2,2),1/(s+1),[1/(s-1);1/((s-2)*(s-3))])
sysdiag(tf2ss(1/s),1/(s+1),[1/(s-1);1/((s-2)*(s-3))])
// a matrix of doubles:
A = [1 0; 0 1], B=[3 4 5; 6 7 8], C=7
D = sysdiag(A,B,C)
//
sysdiag([%t %f; %f %t], eye(2,2), ones(3,3))
// a polynomial matrix:
s = %s;
sysdiag([s 4*s; 4 s^4], [1 s^2 s+2; 3*s 2 s^2-1])
// a rational matrix:
sysdiag([1/s 2*s/(4*s+3)], [s; 4; 1/(s^2+2*s+1)])
// a block diagonal sparse matrix:
S = sysdiag([1 2; 3 4], [5 6; 7 8], [9 10; 11 12], [13 14; 15 16])
S = sparse(S)

See also

  • diag — diagonal including or extracting
  • bdiag — block diagonalization, generalized eigenvectors
  • repmat — Replicate and tile an array
  • brackets — Concatenation. Recipients of an assignment. Results of a function
  • feedback — feedback operation

History

VersionDescription
6.1.0 sysdiag() is declared obsolete.
Scilab Enterprises
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 25 08:49:19 CET 2020