- Scilab Help
- Control Systems - CACSD
- Linear System Representation
- abcd
- arma
- arma2p
- arma2ss
- armac
- bloc2ss
- cont_frm
- des2ss
- des2tf
- frep2tf
- lsslist
- markp2ss
- pfss
- pol2des
- sm2des
- sm2ss
- ss2des
- ss2ss
- ss2tf
- ss2zp
- ssprint
- ssrand
- sysconv
- sysdiag
- syslin
- syssize
- systmat
- tf2des
- tf2ss
- tf2zp
- trfmod
- zp2ss
- zp2tf
- zpk
- zpk2ss
- zpk2tf
Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
However, this page did not exist in the previous stable version.
sysdiag
Creates a block diagonal matrix from provided inputs. Block diagonal system connection. (obsolete)
Syntax
r = sysdiag(a1,a2,...,an)
Arguments
- ai
subsystems (i.e. gains, or linear systems in state-space or transfer form).
constant, boolean, polynomial or rational matrices of any size.
- r
a matrix with a1, a2, a3, ... on the diagonal.
Description
sysdiag() is obsolete. Please use blockdiag() instead. |
Returns the block-diagonal system made with subsystems put in the main diagonal.
Given the inputs A
, B
and C
,
the output will have these matrices arranged on the diagonal:
.
If all the input matrices are square, the output is known as a
block diagonal matrix. |
Used in particular for system interconnections. |
For boolean matrices sysdiag()
always returns a zero one matrix in
the corresponding block ("true" values are replaced by 1 and "false" value by 0).
Examples
s = poly(0,'s') sysdiag(rand(2,2),1/(s+1),[1/(s-1);1/((s-2)*(s-3))]) sysdiag(tf2ss(1/s),1/(s+1),[1/(s-1);1/((s-2)*(s-3))])
// a matrix of doubles: A = [1 0; 0 1], B=[3 4 5; 6 7 8], C=7 D = sysdiag(A,B,C) // sysdiag([%t %f; %f %t], eye(2,2), ones(3,3)) // a polynomial matrix: s = %s; sysdiag([s 4*s; 4 s^4], [1 s^2 s+2; 3*s 2 s^2-1]) // a rational matrix: sysdiag([1/s 2*s/(4*s+3)], [s; 4; 1/(s^2+2*s+1)]) // a block diagonal sparse matrix: S = sysdiag([1 2; 3 4], [5 6; 7 8], [9 10; 11 12], [13 14; 15 16]) S = sparse(S)
See also
History
Version | Description |
6.1.0 | sysdiag() is declared obsolete. |
Report an issue | ||
<< sysconv | Linear System Representation | syslin >> |