Scilab Home page | Wiki | Bug tracker | Forge | Mailing list archives | ATOMS | File exchange
Please login or create an account
Change language to: English - Français - 日本語 - Русский
Ajuda do Scilab >> CACSD > Linear System Representation > sysdiag

sysdiag

conexão de sistemas diagonais em blocos (obsolete)

Seqüência de Chamamento

r = sysdiag(a1,a2,...,an)

Parâmetros

ai

constant, boolean, polynomial or rational matrices of any size.

subsistemas (i.e. ganhos, ou sistema linear em forma de espaço de estados ou de transferência)

r

a matrix with a1, a2, a3, ... on the diagonal

Descrição

sysdiag() is obsolete. Please use blockdiag() instead.

Retorna um sistema diagonal em blocos feito de subsistemas postos na diagonal principal.

Given the inputs A, B and C, the output will have these matrices arranged on the diagonal:

[A 0 0 ; 0 B 0 ; 0 0 C]
.

If all the input matrices are square, the output is known as a block diagonal matrix.
Usado em particular para interconexões de sistemas.

For boolean matrices sysdiag() always returns a zero one matrix in the corresponding block ("true" values are replaced by 1 and "false" value by 0).

Exemplos

s = poly(0,'s')
sysdiag(rand(2,2),1/(s+1),[1/(s-1);1/((s-2)*(s-3))])
sysdiag(tf2ss(1/s),1/(s+1),[1/(s-1);1/((s-2)*(s-3))])
// a matrix of doubles:
A = [1 0; 0 1], B=[3 4 5; 6 7 8], C=7
D = sysdiag(A,B,C)
//
sysdiag([%t %f; %f %t], eye(2,2), ones(3,3))
// a polynomial matrix:
s = %s;
sysdiag([s 4*s; 4 s^4], [1 s^2 s+2; 3*s 2 s^2-1])
// a rational matrix:
sysdiag([1/s 2*s/(4*s+3)], [s; 4; 1/(s^2+2*s+1)])
// a block diagonal sparse matrix:
S = sysdiag([1 2; 3 4], [5 6; 7 8], [9 10; 11 12], [13 14; 15 16])
S = sparse(S)

Ver Também

  • diag — inclusão ou extração diagonal
  • bdiag — diagonalização em blocos, autovetores generalizados
  • repmat — Replicate and tile an array
  • brackets — Concatenation. Recipients of an assignment. Results of a function
  • feedback — feedback operation

Histórico

VersionDescription
6.1.0 sysdiag() is declared obsolete.
Scilab Enterprises
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 25 08:52:29 CET 2020