- Scilab Help
 - CACSD (Computer Aided Control Systems Design)
 - Formal representations and conversions
 - Plot and display
 - abinv
 - arhnk
 - arl2
 - arma
 - arma2p
 - arma2ss
 - armac
 - armax
 - armax1
 - arsimul
 - augment
 - balreal
 - bilin
 - bstap
 - cainv
 - calfrq
 - canon
 - ccontrg
 - cls2dls
 - colinout
 - colregul
 - cont_mat
 - contr
 - contrss
 - copfac
 - csim
 - ctr_gram
 - damp
 - dcf
 - ddp
 - dhinf
 - dhnorm
 - dscr
 - dsimul
 - dt_ility
 - dtsi
 - equil
 - equil1
 - feedback
 - findABCD
 - findAC
 - findBD
 - findBDK
 - findR
 - findx0BD
 - flts
 - fourplan
 - freq
 - freson
 - fspec
 - fspecg
 - fstabst
 - g_margin
 - gamitg
 - gcare
 - gfare
 - gfrancis
 - gtild
 - h2norm
 - h_cl
 - h_inf
 - h_inf_st
 - h_norm
 - hankelsv
 - hinf
 - imrep2ss
 - inistate
 - invsyslin
 - kpure
 - krac2
 - lcf
 - leqr
 - lft
 - lin
 - linf
 - linfn
 - linmeq
 - lqe
 - lqg
 - lqg2stan
 - lqg_ltr
 - lqr
 - ltitr
 - macglov
 - minreal
 - minss
 - mucomp
 - narsimul
 - nehari
 - noisegen
 - nyquistfrequencybounds
 - obs_gram
 - obscont
 - observer
 - obsv_mat
 - obsvss
 - p_margin
 - parrot
 - pfss
 - phasemag
 - plzr
 - pol2des
 - ppol
 - prbs_a
 - projsl
 - repfreq
 - ric_desc
 - ricc
 - riccati
 - routh_t
 - rowinout
 - rowregul
 - rtitr
 - sensi
 - sident
 - sorder
 - specfact
 - ssprint
 - st_ility
 - stabil
 - sysfact
 - syslin
 - syssize
 - time_id
 - trzeros
 - ui_observer
 - unobs
 - zeropen
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
findAC
discrete-time system subspace identification
Calling Sequence
[A,C] = findAC(S,N,L,R,METH,TOL,PRINTW) [A,C,RCND] = findAC(S,N,L,R,METH,TOL,PRINTW)
Arguments
- S
 integer, the number of block rows in the block-Hankel matrices
- N
 integer
- L
 integer
- R
 matrix, relevant part of the R factor of the concatenated block-Hankel matrices computed by a call to findr.
- METH
 integer, an option for the method to use
- = 1
 MOESP method with past inputs and outputs;
- = 2
 N4SID method;
Default: METH = 3.
- TOL
 the tolerance used for estimating the rank of matrices. If TOL > 0, then the given value of TOL is used as a lower bound for the reciprocal condition number. Default: prod(size(matrix))*epsilon_machine where epsilon_machine is the relative machine precision.
- PRINTW
 integer, switch for printing the warning messages.
- PRINTW
 = 1: print warning messages;
- = 0
 do not print warning messages.
Default: PRINTW = 0.
- A
 matrix, state system matrix
- C
 matrix, output system matrix
- RCND
 vector of length 4, condition numbers of the matrices involved in rank decision
Description
finds the system matrices A and C of a discrete-time system, given the system order and the relevant part of the R factor of the concatenated block-Hankel matrices, using subspace identification techniques (MOESP or N4SID).
[A,C] = findAC(S,N,L,R,METH,TOL,PRINTW) computes the system matrices A and C. The model structure is: x(k+1) = Ax(k) + Bu(k) + Ke(k), k >= 1, y(k) = Cx(k) + Du(k) + e(k), where x(k) and y(k) are vectors of length N and L, respectively.
[A,C,RCND] = findAC(S,N,L,R,METH,TOL,PRINTW) also returns the vector RCND of length 4 containing the condition numbers of the matrices involved in rank decisions.
Matrix R, computed by findR, should be determined with suitable arguments METH and JOBD.
Examples
//generate data from a given linear system A = [ 0.5, 0.1,-0.1, 0.2; 0.1, 0, -0.1,-0.1; -0.4,-0.6,-0.7,-0.1; 0.8, 0, -0.6,-0.6]; B = [0.8;0.1;1;-1]; C = [1 2 -1 0]; SYS=syslin(0.1,A,B,C); nsmp=100; U=prbs_a(nsmp,nsmp/5); Y=(flts(U,SYS)+0.3*rand(1,nsmp,'normal')); // Compute R S=15;L=1; [R,N,SVAL] = findR(S,Y',U'); N=3; METH=3;TOL=-1; [A,C] = findAC(S,N,L,R,METH,TOL);
See Also
- findABCD — discrete-time system subspace identification
 - findBD — initial state and system matrices B and D of a discrete-time system
 - findBDK — Kalman gain and B D system matrices of a discrete-time system
 - findR — Preprocessor for estimating the matrices of a linear time-invariant dynamical system
 - sorder — computing the order of a discrete-time system
 - sident — discrete-time state-space realization and Kalman gain
 
| Report an issue | ||
| << findABCD | CACSD (Computer Aided Control Systems Design) | findBD >> |