Scilab 5.5.1
- Scilab Help
- CACSD (Computer Aided Control Systems Design)
- Formal representations and conversions
- Plot and display
- abinv
- arhnk
- arl2
- arma
- arma2p
- arma2ss
- armac
- armax
- armax1
- arsimul
- augment
- balreal
- bilin
- bstap
- cainv
- calfrq
- canon
- ccontrg
- cls2dls
- colinout
- colregul
- cont_mat
- contr
- contrss
- copfac
- csim
- ctr_gram
- damp
- dcf
- ddp
- dhinf
- dhnorm
- dscr
- dsimul
- dt_ility
- dtsi
- equil
- equil1
- feedback
- findABCD
- findAC
- findBD
- findBDK
- findR
- findx0BD
- flts
- fourplan
- freq
- freson
- fspec
- fspecg
- fstabst
- g_margin
- gamitg
- gcare
- gfare
- gfrancis
- gtild
- h2norm
- h_cl
- h_inf
- h_inf_st
- h_norm
- hankelsv
- hinf
- imrep2ss
- inistate
- invsyslin
- kpure
- krac2
- lcf
- leqr
- lft
- lin
- linf
- linfn
- linmeq
- lqe
- lqg
- lqg2stan
- lqg_ltr
- lqr
- ltitr
- macglov
- minreal
- minss
- mucomp
- narsimul
- nehari
- noisegen
- nyquistfrequencybounds
- obs_gram
- obscont
- observer
- obsv_mat
- obsvss
- p_margin
- parrot
- pfss
- phasemag
- plzr
- pol2des
- ppol
- prbs_a
- projsl
- repfreq
- ric_desc
- ricc
- riccati
- routh_t
- rowinout
- rowregul
- rtitr
- sensi
- sident
- sorder
- specfact
- ssprint
- st_ility
- stabil
- sysfact
- syslin
- syssize
- time_id
- trzeros
- ui_observer
- unobs
- zeropen
Please note that the recommended version of Scilab is 2024.1.0. This page might be outdated.
See the recommended documentation of this function
feedback
feedback operation
Calling Sequence
Sl=Sl1/.Sl2
Arguments
- Sl1,Sl2
linear systems (
syslin
list) in state-space or transfer form, or ordinary gain matrices.- Sl
linear system (
syslin
list) in state-space or transfer form
Description
The feedback operation is denoted by /.
(slashdot).
This command returns Sl=Sl1*(I+Sl2*Sl1)^-1
, i.e the (negative)
feedback of Sl1
and Sl2
. Sl
is the transfer
v -> y
for y = Sl1 u
, u = v - Sl2 y
.
The result is the same as Sl=LFT([0,I;I,-Sl2],Sl1)
.
Caution: do not use with decimal point (e.g. 1/.1 is ambiguous!) |
Examples
S1=ssrand(2,2,3);S2=ssrand(2,2,2); W=S1/.S2; ss2tf(S1/.S2) //Same operation by LFT: ss2tf(lft([zeros(2,2),eye(2,2);eye(2,2),-S2],S1)) //Other approach: with constant feedback BigS=sysdiag(S1,S2); F=[zeros(2,2),eye(2,2);-eye(2,2),zeros(2,2)]; Bigclosed=BigS/.F; W1=Bigclosed(1:2,1:2); //W1=W (in state-space). ss2tf(W1) //Inverting ss2tf(S1*inv(eye()+S2*S1))
See Also
Report an issue | ||
<< equil1 | CACSD (Computer Aided Control Systems Design) | findABCD >> |