- Scilab help
- Scilab
- Scilab keywords
- TMPDIR
- abort
- add_demo
- argn
- banner
- boolean
- break
- clear
- clearfun
- clearglobal
- comp
- continue
- debug
- delbpt
- dispbpt
- edit
- errcatch
- errclear
- error
- error_table
- exists
- exit
- external
- extraction
- format
- funcprot
- funptr
- getdebuginfo
- getmd5
- getmemory
- getmodules
- getos
- getscilabmode
- getshell
- getvariablesonstack
- getversion
- gstacksize
- ieee
- insertion
- intppty
- inv_coeff
- iserror
- isglobal
- lasterror
- macr2lst
- macr2tree
- matrices
- matrix
- mode
- mtlb_mode
- names
- newfun
- null
- pause
- perl
- poly
- predef
- quit
- rational
- readgateway
- resume
- sciargs
- scilab
- setbpt
- stacksize
- startup
- symbols
- testmatrix
- type
- typename
- user
- varn
- ver
- warning
- what
- where
- whereami
- who
- who_user
- whos
- with_atlas
- with_javasci
- with_macros_source
- with_module
- with_pvm
- with_texmacs
- with_tk

Please note that the recommended version of Scilab is 6.0.2. This page might be outdated.

See the recommended documentation of this function

# extraction

matrix and list entry extraction

### Calling Sequence

x(i) x(i,j) x(i,j,k,..) [...]=l(i) [...]=l(k1)...(kn)(i) or [...]=l(list(k1,...,kn,i)) l(k1)...(kn)(i,j) or l(list(k1,...,kn,list(i,j))

### Arguments

- x
matrix of any possible types

- l
list variable

- i,j, k
indices

- k1,...kn
indices

### Description

- MATRIX CASE
`i`

,`j`

,`k`

,.. can be:- a real scalar or a vector or a matrix with positive elements.
`r=x(i,j)`

builds the matrix`r`

such as`r(l,k)=x(int(i(l)),int(j(k)))`

for`l`

from 1 to`size(i,'*')`

and`k`

from 1 to`size(j,'*')`

.`i`

(`j`

) Maximum value must be less or equal to`size(x,1)`

(`size(x,2)`

).`r=x(i)`

with`x`

a 1x1 matrix builds the matrix`r`

such as`r(l,k)=x(int(i(l)),int(i(k)))`

for`l`

from 1 to`size(i,1)`

and`k`

from 1 to`size(i,2)`

.Note that in this case index

`i`

is valid only if all its entries are equal to one.`r=x(i)`

with`x`

a row vector builds the row vector`r`

such as`r(l)=x(int(i(l)))`

for`l`

from 1 to`size(i,'*')`

`i`

Maximum value must be less or equal to`size(x,'*')`

.`r=x(i)`

with`x`

a matrix with one or more columns builds the column vector`r`

such as`r(l)`

(`l`

from 1 to`size(i,'*')`

) contains the`int(i(l))`

entry of the column vector formed by the concatenation of the`x`

's columns.`i`

Maximum value must be less or equal to`size(x,'*')`

.

- the symbol
`:`

`which stands for "all elements".`

`r=x(i,:)`

builds the matrix`r`

such as`r(l,k)=x(int(i(l)),k))`

for`l`

from 1 to`size(i,'*')`

and`k`

from 1 to`size(x,2)`

`r=x(:,j)`

builds the matrix`r`

such as`r(l,k)=x(l,int(j(k)))`

for`l`

from 1 to`size(r,1)`

and`k`

from 1 to`size(j,'*')`

.`r=x(:)`

builds the column vector`r`

formed by the column concatenations of`x`

columns. It is equivalent to`matrix(x,size(x,'*'),1)`

.

- a vector of boolean
If an index (

`i`

or`j`

) is a vector of booleans it is interpreted as`find(i)`

or respectively`find(j)`

- a polynomial
If an index (

`i`

or`j`

) is a vector of polynomials or implicit polynomial vector it is interpreted as`horner(i,m)`

or respectively`horner(j,n)`

where`m`

and`n`

are associated`x`

dimensions. Even if this feature works for all polynomials, it is recommended to use polynomials in`$`

for readability.

For matrices with more than 2 dimensions (see:hypermatrices) the dimensionality is automatically reduced when right-most dimensions are equal to 1.

- LIST OR TLIST CASE
If they are present the

`ki`

give the path to a sub-list entry of`l`

data structure. They allow a recursive extraction without intermediate copies. The instructions`[...]=l(k1)...(kn)(i)`

and

`[...]=l(list(k1,...,kn,i))`

are interpreted as:

`lk1 = l(k1)`

`.. = ..`

`lkn = lkn-1(kn)`

`[...] = lkn(i)`

And the`l(k1)...(kn)(i,j)`

and`l(list(k1,...,kn,list(i,j))`

instructions are interpreted as:`lk1 = l(k1)`

`.. = ..`

`lkn = lkn-1(kn)`

`lkn(i,j)`

`i`

and`j`

, can be: When path points on more than one list component the instruction must have as many left hand side arguments as selected components. But if the extraction syntax is used within a function input calling sequence each returned list component is added to the function calling sequence.Note that,

`l(list())`

is the same as`l`

.- i and j may be :
- real scalar or vector or matrix with positive elements.
`[r1,...rn]=l(i)`

extracts the`i(k)`

elements from the list l and store them in`rk`

variables for`k`

from 1 to`size(i,'*')`

- the symbol
`:`

which stands for "all elements".

- a vector of booleans.
If

`i`

is a vector of booleans it is interpreted as`find(i)`

.- a polynomial.
If

`i`

is a vector of polynomials or implicit polynomial vector it is interpreted as`horner(i,m)`

where`m=size(l)`

. Even if this feature works for all polynomials, it is recommended to use polynomials in`$`

for readability.

- k1,..kn may be :
- real positive scalar,
- a polynomial,
interpreted as

`horner(ki,m)`

where`m`

is the corresponding sub-list size.- a character string
associated with a sub-list entry name.

### Remarks

For soft coded matrix types such as rational functions and state
space linear systems, `x(i)`

syntax may not be used for
vector element extraction due to confusion with list element extraction.
`x(1,j)`

or `x(i,1)`

syntax must be
used.

### Examples

// MATRIX CASE a=[1 2 3;4 5 6] a(1,2) a([1 1],2) a(:,1) a(:,3:-1:1) a(1) a(6) a(:) a([%t %f %f %t]) a([%t %f],[2 3]) a(1:2,$-1) a($:-1:1,2) a($) // x='test' x([1 1;1 1;1 1]) // b=[1/%s,(%s+1)/(%s-1)] b(1,1) b(1,$) b(2) // the numerator // LIST OR TLIST CASE l=list(1,'qwerw',%s) l(1) [a,b]=l([3 2]) l($) x=tlist(l(2:3)) //form a tlist with the last 2 components of l // dts=list(1,tlist(['x';'a';'b'],10,[2 3])); dts(2)('a') dts(2)('b')(1,2) [a,b]=dts(2)(['a','b'])

## Comments

Add a comment:Please login to comment this page.