- Aide Scilab
 - Algèbre Lineaire
 - bdiag
 - chfact
 - chol
 - chsolve
 - cmb_lin
 - coff
 - colcomp
 - companion
 - cond
 - det
 - expm
 - fullrf
 - fullrfk
 - givens
 - glever
 - gspec
 - hess
 - householder
 - inv
 - kernel
 - linsolve
 - lu
 - lyap
 - nlev
 - orth
 - pbig
 - pinv
 - polar
 - proj
 - qr
 - range
 - rank
 - rcond
 - rowcomp
 - spec
 - sqroot
 - squeeze
 - sva
 - svd
 - trace
 - aff2ab
 - balanc
 - classmarkov
 - eigenmarkov
 - ereduc
 - fstair
 - genmarkov
 - gschur
 - im_inv
 - kroneck
 - lsq
 - pencan
 - penlaur
 - projspec
 - psmall
 - quaskro
 - randpencil
 - rankqr
 - rowshuff
 - rref
 - schur
 - spaninter
 - spanplus
 - spantwo
 - sylv
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
quaskro
quasi-Kronecker form
Calling Sequence
[Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F) [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A) [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(F,tol) [Q,Z,Qd,Zd,numbeps,numbeta]=quaskro(E,A,tol)
Arguments
- F
 real matrix pencil
F=s*E-A(s=poly(0,'s'))- E,A
 two real matrices of same dimensions
- tol
 a real number (tolerance, default value=1.d-10)
- Q,Z
 two square orthogonal matrices
- Qd,Zd
 two vectors of integers
- numbeps
 vector of integers
Description
Quasi-Kronecker form of matrix pencil: quaskro computes two
    orthogonal matrices Q, Z which put the pencil F=s*E -A into
    upper-triangular form:
| sE(eps)-A(eps) | X | X | |----------------|----------------|------------| | O | sE(inf)-A(inf) | X | Q(sE-A)Z = |=================================|============| | | | | O | sE(r)-A(r) |
The dimensions of the blocks are given by:
eps=Qd(1) x Zd(1), inf=Qd(2) x Zd(2),
    r = Qd(3) x Zd(3)
The inf block contains the infinite modes of
    the pencil.
The f block contains the finite modes of
    the pencil
The structure of epsilon blocks are given by:
numbeps(1) = # of eps blocks of size 0 x 1
numbeps(2) = # of eps blocks of size 1 x 2
numbeps(3) = # of eps blocks of size 2 x 3     etc...
The complete (four blocks) Kronecker form is given by
    the function kroneck which calls quaskro on
    the (pertransposed) pencil sE(r)-A(r).
The code is taken from T. Beelen
See Also
| << psmall | Algèbre Lineaire | randpencil >> |