Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
5.3.0 - 日本語

Change language to:
English - Français - Português

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Scilab manual >> Linear Algebra > eigenmarkov

eigenmarkov

正規化された左および右マルコフ固有ベクトル

呼び出し手順

[M,Q]=eigenmarkov(P)

パラメータ

P

実数 N x N マルコフ行列. 1に加える各行のエントリの合計.

M

N個の列を有する実数行列.

Q

N個の行を有する実数行列.

説明

マルコフ推移行列 P の固有値 1 に関連する 正規化された左および右固有ベクトルを返します. この固有値の多重度が m で, Pが N x N の場合, M は m x N 行列で Q は N x m 行列となります. M(k,:) はk番目のエルゴード集合(再帰的クラス)に関連する 確率分布ベクトルです. M(k,x) は x が k番目の再帰的クラスにない場合には 0となります. Q(x,k) はx から始まる k 番目の再帰的クラスに最終的にある確率です. 大きなkに関してP^k が 収束する場合(1以外に単位円上に固有値がない), 極限はQ*Mとなります(固有投影).

//P は2つの再帰的なクラス (2および1個の状態量を有する) 2つの一時的な状態量
P=genmarkov([2,1],2) 
[M,Q]=eigenmarkov(P);
P*Q-Q
Q*M-P^20
<< det Linear Algebra ereduc >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Wed Jan 26 16:25:04 CET 2011