Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
2024.1.0 - 日本語


princomp

主成分解析

呼び出し手順

[facpr,comprinc,lambda,tsquare, explained, mu] = princomp(x,eco)

パラメータ

x

np列 (n個の独立変数, p 個の変数)の実数行列です.

eco

論理値, 小さな大きさの特異値分解を可能とするために使用されます.

facpr

pp列の行列. 主成分を有します: 相関行列Vの固有ベクトル.

comprinc

np列の行列. 主成分を有します.この行列の各列は,M個の主軸への個々の直交投影です. この列の各々は, 条件u'_i M^(-1) u_i=1の下で分散を最大化する 変数x1, ...,xpの線形結合です.

lambda

p列ベクトルです. Vの固有値を有します. ただし,Vは相関行列です.

tsquare

n列ベクトル. 各データ点に関するHotellingのT^2統計量を有します.

explained

a column vector of length "number of components". The percentage of variance explained by each principal component.

mu

a row vector of length p. The estimated mean of each variable of x.

説明

この関数は,np列の データ行列xで "主成分解析"を行ないます.

この手法の背後のアイデアは, n個独立変量からなるクラスタを より小さな次元の部分空間に 近似的な手法で表すことです. これを行うために, この手法はクラスタを部分空間に投影します. k次元投影部分区間の選択は, 投影の距離が最小のゆがみを有するように行われます: 投影の距離の平方が最大化されるような k次元部分空間を探します(実際には投影では距離は伸ばすことのみできます). 言い換えると, 投影のk次元部分空間への投影の慣性は最大化される必要があります.

標準化された変数について主成分解析を計算する際に, princomp(wcenter(x,1))またはpca関数を使用することができます.

a=rand(100,10,'n');
[facpr,comprinc,lambda,tsquare] = princomp(a);
x = [1 2 1;2 1 3; 3 2 3]
[facpr, comprinc, lambda, tsquare, explained, mu] = princomp(x, %t);
comprinc * facpr' + ones(3, 1) * mu // == x

参照

  • wcenter — 中心化と重み付け
  • pca — 正規化された変数により主成分解析を行う

参考文献

Saporta, Gilbert, Probabilités, Analyse des Données et Statistique, Editions Technip, Paris, 1990.

History

バージョン記述
2024.1.0 princomp now returns the percentage of the variance explained by each principal component and the estimated mean of each variable of x.
Report an issue
<< pca Multivariate - regress correl PCA reglin >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jun 17 17:54:18 CEST 2024