- Aide de Scilab
 - Systèmes de Contrôle - CACSD
 - Représentation de Systèmes Linéaires
 - abcd
 - arma
 - arma2p
 - arma2ss
 - armac
 - bloc2ss
 - cont_frm
 - des2ss
 - des2tf
 - frep2tf
 - lsslist
 - markp2ss
 - pfss
 - pol2des
 - sm2des
 - sm2ss
 - ss2des
 - ss2ss
 - ss2tf
 - ss2zp
 - ssprint
 - ssrand
 - sysconv
 - sysdiag
 - syslin
 - syssize
 - systmat
 - tf2des
 - tf2ss
 - tf2zp
 - trfmod
 - zp2ss
 - zp2tf
 - zpk
 - zpk2ss
 - zpk2tf
 
Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
ss2ss
state-space to state-space conversion, feedback, injection
Syntax
[Sl1, right, left] = ss2ss(Sl, T) [Sl1, right, left] = ss2ss(Sl, T, F) [Sl1, right, left] = ss2ss(Sl, T, F, G) [Sl1, right, left] = ss2ss(Sl, T, F, G, flag)
Arguments
- Sl
 linear system (
syslinlist) in state-space form- T
 square (non-singular) matrix
- Sl1, right, left
 linear systems (syslin lists) in state-space form
- F
 real matrix (state feedback gain)
- G
 real matrix (output injection gain)
Description
Returns the linear system Sl1=[A1,B1,C1,D1] where
            A1=inv(T)*A*T, B1=inv(T)*B, C1=C*T, D1=D.
Optional parameters F and G
            are state feedback and output injection respectively.
For example, Sl1=ss2ss(Sl,T,F) returns
            Sl1 with:
and right is a non singular linear system such
            that Sl1=Sl*right.
Sl1*inv(right) is a factorization of
            Sl.
Sl1=ss2ss(Sl,T,0*F,G) returns
            Sl1 with:
and left is a non singular linear system such
            that Sl1=left*Sl (right=Id if
            F=0).
When both F and G are given,
            Sl1=left*Sl*right.
When
flagis used andflag=1an output injection as follows is used
and then a feedback is performed,
Fmust be of size(m+p,n)
rightandlefthave the following property:When
flagis used andflag=2a feedback (Fmust be of size(m,n)) is performed and then the above output injection is applied.rightandlefthave the following property:
Examples
Sl=ssrand(2,2,5); trzeros(Sl) // zeros are invariant: Sl1=ss2ss(Sl,rand(5,5),rand(2,5),rand(5,2)); trzeros(Sl1), trzeros(rand(2,2)*Sl1*rand(2,2)) // output injection [ A + GC, (B+GD,-G)] // [ C , (D , 0)] p=1,m=2,n=2; sys=ssrand(p,m,n); // feedback (m,n) first and then output injection. F1=rand(m,n); G=rand(n,p); [sys1,right,left]=ss2ss(sys,rand(n,n),F1,G,2); // Sl1 equiv left*blockdiag(sys*right,eye(p,p))) res=clean(ss2tf(sys1) - ss2tf(left*blockdiag(sys*right,eye(p,p)))) // output injection then feedback (m+p,n) F2=rand(p,n); F=[F1;F2]; [sys2,right,left]=ss2ss(sys,rand(n,n),F,G,1); // Sl1 equiv left*blockdiag(sys,eye(p,p))*right res=clean(ss2tf(sys2)-ss2tf(left*blockdiag(sys,eye(p,p))*right)) // when F2= 0; sys1 and sys2 are the same F2=0*rand(p,n);F=[F1;F2]; [sys2,right,left]=ss2ss(sys,rand(n,n),F,G,1); res=clean(ss2tf(sys2)-ss2tf(sys1))
| Report an issue | ||
| << ss2des | Représentation de Systèmes Linéaires | ss2tf >> |