Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.1.1 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> Systèmes de Contrôle - CACSD > Représentation de Systèmes Linéaires > zp2ss

zp2ss

Zero pole gain to state space

Syntax

S = zp2ss(z, p, k)
S = zp2ss(z, p, k, dt)

Arguments

z

a real or complex matrix, the ith column contains the transmission zeros relative to the ith output. If some zeros are complex, they must appear in complex conjugate pairs.

If the number of poles relative to the ith output is less than the max number of poles for each output, the ith column must be padded with %inf values.

p

a real or complex vector, the poles of the system. If some poles are complex, they must appear in complex conjugate pairs.

If the number of poles relative to the ith output is less than the max number of poles for each output, the ith column must be padded with %inf values.

k

a real scalar or a real vector, the ith element contains the gain relative to the ith output.

dom

a character string with possible values "c" or "d", [] or a real positive scalar, the system time domain (see syslin).

S

a single input linear system in state space representation.

Description

Converts a zero pole gain representation to SIMO state space

Examples

Z=[2;1];P=[-5-%i;-5+%i;-3-%i;-3+%i];K=1;
S=zp2ss(Z,P,K,"c")
ssprint(S)
trzeros(S)

See Also

  • ss2zp — SIMO state space system to zero pole gain representation
  • trzeros — transmission zeros and normal rank

History

VersionDescription
6.0

Function added.

Report an issue
<< trfmod Représentation de Systèmes Linéaires zp2tf >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Mon Jan 03 14:33:06 CET 2022