Scilab Website | Contribute with GitLab | Mailing list archives | ATOMS toolboxes
Scilab Online Help
6.0.0 - Français

Change language to:
English - 日本語 - Português - Русский

Please note that the recommended version of Scilab is 2025.0.0. This page might be outdated.
See the recommended documentation of this function

Aide de Scilab >> Systèmes de Contrôle - CACSD > Conception Système > Linéaire Quadratique > lqg2stan

lqg2stan

LQG to standard problem

Syntax

[P_aug,r]=lqg2stan(P,Qxu,Qwv)

Arguments

P22

State space representation of the nominal plant (nu inputs, ny outputs, nx states).

Qxu

[Q,S;S',N] symmetric nx+nu by nx+nu weighting matrix.

Qwv

[R,T;T',V] symmetric nx+ny by nx+ny covariance matrix.

r

Row vector [ny nu].

P_aug

Augmented plant state space representation (see: syslin)

Description

lqg2stan returns the augmented plant for linear LQG (H2) controller design problem defined by:

  • The nominal plant P22:described by

  • The (instantaneous) cost function .

  • The noises covariance matrix

Up to Scilab-5.5.2 lqg2stan returns wrong inverted values (see bug 13751) to obtain the good result one had to use [P,r]=lqg2stan(-P,Qxu,Qwv).

This bug is fixed since Scilab-6.0.0, old codes must be modified accordingly.

Algorithm

If [B1;D21] is a factor of Qxu, [C1,D12] is a factor of Qwv (see: fullrf) then P_aug=syslin(P.dt,P.A,[B1,P.B],[C1;-P.C],[0,D12;D21,P.D])

Examples

ny=2;nu=3;nx=4;
P22=ssrand(ny,nu,nx);
Qxu=rand(nx+nu,nx+nu);Qxu=Qxu*Qxu';
Qwv=rand(nx+ny,nx+ny);Qwv=Qwv*Qwv';
[P_aug,r]=lqg2stan(P,Qxu,Qwv);
K=lqg(P_aug,r);  //K=LQG-controller
spec(h_cl(P_aug,r,K))      //Closed loop should be stable
//Same as Cl=P22/.K; spec(Cl('A'))

s=poly(0,'s')
lqg2stan(1/(s+2),eye(2,2),eye(2,2))

See also

  • lqg — LQG compensator
  • lqr — LQ compensator (full state)
  • lqe — linear quadratic estimator (Kalman Filter)
  • obscont — observer based controller
  • h_inf — Continuous time H-infinity (central) controller
  • augment — augmented plant
  • fstabst — Youla's parametrization of continuous time linear dynamical systems
  • feedback — feedback operation
Report an issue
<< lqg Linéaire Quadratique lqg_ltr >>

Copyright (c) 2022-2024 (Dassault Systèmes)
Copyright (c) 2017-2022 (ESI Group)
Copyright (c) 2011-2017 (Scilab Enterprises)
Copyright (c) 1989-2012 (INRIA)
Copyright (c) 1989-2007 (ENPC)
with contributors
Last updated:
Tue Feb 14 15:06:34 CET 2017