Please note that the recommended version of Scilab is 2026.0.0. This page might be outdated.
See the recommended documentation of this function
eigs
calculates largest eigenvalues and eigenvectors of matrices
Calling Sequence
d = eigs(A [,B [,k [,sigma [,opts]]]]) [d, v] = eigs(A [,B [,k [,sigma [,opts]]]]) d = eigs(Af, n [,B [,k [,sigma [,opts]]]]) [d, v] = eigs(Af, n [,B [,k [,sigma [,opts]]]])
Arguments
- A
a full or sparse, real or complex, symmetric or non-symmetric square matrix
- Af
a function
- n
a scalar, defined only if
Ais a function- B
a sparse, real or complex, square matrix with same dimensions as
A- k
an integer, number of eigenvalues to be computed
- sigma
a real scalar or a string of length 2
- opts
a structure
- d
a real or complex eigenvalues vector or diagonal matrix (eigenvalues along the diagonal)
- v
real or complex eigenvector matrix
Description
The purpose of the eigs function is to compute the largest eigenvalues of sparse, large matrices.
- d = eigs(A) or d = eigs(Af, n)
solves the eigenvalue problem
A * v = lambda * v. This calling returns a vectordcontaining the six largest magnitude eigenvalues.Ais either a square matrix, which can be symmetric or non-symmetric, real or complex, full or sparse.Ashould be represented by a functionAf. In this instance, a scalarndesignating the length of the vector argument, must be defined. It must have the following header :function y=A(x)
This function
Afmust return one of the four following expressions :- A * x
if sigma is not given or is a string other than 'SM'.
- A \ x
if sigma is 0 or 'SM'.
- (A - sigma * I) \ x
for the standard eigenvalue problem, where I is the identity matrix.
- (A - sigma * B) \ x
for the generalized eigenvalue problem.
- A * x
- [d, v] = eigs(A) or [d, v] = eigs(Af, n)
returns a diagonal matrix
dcontaining the six largest magnitude eigenvalues on the diagonal.vis a n by six matrix whose columns are the six eigenvectors corresponding to the returned eigenvalues.- d = eigs(A, B)
solves the generalized eigenvalue problem
A * v = lambda * B * vwith positive, definite matrixB.if
Bis not specified,B = []is used.if
Bis specified,Bmust be the same size as A.
- d = eigs(A, B, k)
returns in vector
dthekeigenvalues. Ifkis not specified,k = min(n, 6), where n is the row number of A.- d = eigs(A, B, k, sigma)
returns in vector
dthekeigenvalues determined bysigma.sigmacan be either a real or complex including 0 scalar or string. If sigma is a string of length 2, it takes one of the following values :'LM'compute theklargest in magnitude eigenvalues (by default).'SM'compute theksmallest in magnitude eigenvalues (same as sigma = 0).'LA'compute thekLargest Algebraic eigenvalues, only for real symmetric problems.'SA'compute thekSmallest Algebraic eigenvalues, only for real symmetric problems.'BE'computekeigenvalues, half from each end of the spectrum, only for real symmetric problems.'LR'compute thekeigenvalues of Largest Real part, only for real non-symmetric or complex problems.'SR'compute thekeigenvalues of Smallest Real part, only for real non-symmetric or complex problems.'LI'compute thekeigenvalues of Largest Imaginary part, only for real non-symmetric or complex problems.'SI'compute thekeigenvalues of Smallest Imaginary part, only for real non-symmetric or complex problems.
- d = eigs(A, B, k, sigma, opts)
If the
optsstructure is specified, different options can be used to compute thekeigenvalues :tol
required convergence tolerance. By default,
tol = %eps.maxiter
maximum number of iterations. By default,
maxiter = 300.ncv
number of Lanzcos basis vectors to use. For real non-symmetric problems, the
ncvvalue must be greater or equal than2 * k + 1and, by default,ncv = min(max(2 * k + 1, 20), nA). For real symmetric or complex problems,ncvmust be greater or equal2 * kand, by default,ncv = min(max(2 * k, 20), nA)withnA = size(A, 2).resid
starting vector whose contains the initial residual vector, possibly from a previous run. By default,
residis a random initial vector.cholB
if
chol(B)is passed rather thanB. By default,cholBis %f.isreal
if
Afis given,isrealcan be defined. By default,isrealis %t. This argument must not be indicated ifAis a matrix.issym
if
Afis given,issymcan be defined. By default,issymis %f. This argument must not be indicated ifAis a matrix.
References
This function is based on the ARPACK package written by R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang.
DSAUPD and DSEUPD routines for real symmetric problems,
DNAUPD and DNEUPD routines for real non-symmetric problems.
ZNAUPD and ZNEUPD routines for complex problems.
Example for real symmetric problems
clear opts A = diag(10*ones(10,1)); A(1:$-1,2:$) = A(1:$-1,2:$) + diag(6*ones(9,1)); A(2:$,1:$-1) = A(2:$,1:$-1) + diag(6*ones(9,1)); B = eye(10,10); k = 8; sigma = 'SM'; opts.cholB = %t; d = eigs(A) [d, v] = eigs(A) d = eigs(A, B, k, sigma) [d, v] = eigs(A, B, k, sigma) d = eigs(A, B, k, sigma, opts) [d, v] = eigs(A, B, k, sigma, opts) // With sparses AS = sparse(A); BS = sparse(B); d = eigs(AS) [d, v] = eigs(AS) d = eigs(AS, BS, k, sigma) [d, v] = eigs(AS, BS, k, sigma) d = eigs(AS, BS, k, sigma, opts) [d, v] = eigs(AS, BS, k, sigma, opts) // With function clear opts function y=fn(x) y = A * x; endfunction opts.isreal = %t; opts.issym = %t; d = eigs(fn, 10, [], k, 'LM', opts) function y=fn(x) y = A \ x; endfunction d = eigs(fn, 10, [], k, 'SM', opts) function y=fn(x) y = (A - 4 * eye(10,10)) \ x; endfunction d = eigs(fn, 10, [], k, 4, opts)
Example for real non-symmetric problems
clear opts A = diag(10*ones(10,1)); A(1:$-1,2:$) = A(1:$-1,2:$) + diag(6*ones(9,1)); A(2:$,1:$-1) = A(2:$,1:$-1) + diag(-6*ones(9,1)); B = eye(10,10); k = 8; sigma = 'SM'; opts.cholB = %t; d = eigs(A) [d, v] = eigs(A) d = eigs(A, B, k, sigma) [d, v] = eigs(A, B, k, sigma) d = eigs(A, B, k, sigma, opts) [d, v] = eigs(A, B, k, sigma, opts) // With sparses AS = sparse(A); BS = sparse(B); d = eigs(AS) [d, v] = eigs(AS) d = eigs(AS, BS, k, sigma) [d, v] = eigs(AS, BS, k, sigma) d = eigs(AS, BS, k, sigma, opts) [d, v] = eigs(AS, BS, k, sigma, opts) // With function clear opts function y=fn(x) y = A * x; endfunction opts.isreal = %t; opts.issym = %f; d = eigs(fn, 10, [], k, 'LM', opts) function y=fn(x) y = A \ x; endfunction d = eigs(fn, 10, [], k, 'SM', opts) function y=fn(x) y = (A - 4 * eye(10,10)) \ x; endfunction d = eigs(fn, 10, [], k, 4, opts)
Example for complex problems
clear opts A = diag(10*ones(10,1) + %i * ones(10,1)); A(1:$-1,2:$) = A(1:$-1,2:$) + diag(6*ones(9,1)); A(2:$,1:$-1) = A(2:$,1:$-1) + diag(-6*ones(9,1)); B = eye(10,10); k = 8; sigma = 'LM'; opts.cholB = %t; d = eigs(A) [d, v] = eigs(A) d = eigs(A, B, k, sigma) [d, v] = eigs(A, B, k, sigma) d = eigs(A, B, k, sigma, opts) [d, v] = eigs(A, B, k, sigma, opts) // With sparses AS = sparse(A); BS = sparse(B); d = eigs(AS) [d, v] = eigs(AS) d = eigs(AS, BS, k, sigma) [d, v] = eigs(AS, BS, k, sigma) d = eigs(AS, BS, k, sigma, opts) [d, v] = eigs(AS, BS, k, sigma, opts) // With function clear opts function y=fn(x) y = A * x; endfunction opts.isreal = %f; opts.issym = %f; d = eigs(fn, 10, [], k, 'LM', opts) function y=fn(x) y = A \ x; endfunction d = eigs(fn, 10, [], k, 'SM', opts) function y=fn(x) y = (A - 4 * eye(10,10)) \ x; endfunction d = eigs(fn, 10, [], k, 4, opts)
See Also
- spec — valeurs propres d'une matrice
History
| Version | Description |
| 5.4.0 | Function introduced. Deprecates dnaupd, dneupd, dsaupd, dseupd, znaupd and zneupd. |
| Report an issue | ||
| << dseupd | ARnoldi PACKage (binding de ARPACK) | znaupd >> |